Find two numbers whose difference of fourth power is equal to N
Given an integer N, the task is to find two non-negative integers X and Y such that X4 – Y4 = N. If no such pair exists, print -1.
Examples:
Input: N = 15
Output: X = 2, Y = 1
Explanation:
X4 – Y4 = (2)4 – (1)4 = (16) – (1) = 15Input: N = 10
Output: -1
Explanation :
No such value of X and Y are there which satisfy the condition.
Approach:
To solve the problem mentioned above, we have to observe that we need to find the minimum and the maximum values of x and y that is possible to satisfy the equation.
- The minimum value for the two integers can be 0 since X & Y are non-negative.
- The maximum value of X and Y can be ceil(N(1/4)).
- Hence, iterate over the range [0, ceil(N(1/4))] and find any suitable pair of X and Y that satisfies the condition.
Below is the implementation of the above approach:
C++
// C++ implementation to find the // values of x and y for the given // equation with integer N #include <bits/stdc++.h> using namespace std; // Function which find required x & y void solve( int n) { // Upper limit of x & y, // if such x & y exists int upper_limit = ceil ( pow ( n, 1.0 / 4)); for ( int x = 0; x <= upper_limit; x++) { for ( int y = 0; y <= upper_limit; y++) { // num1 stores x^4 int num1 = x * x * x * x; // num2 stores y^4 int num2 = y * y * y * y; // If condition is satisfied // the print and return if (num1 - num2 == n) { cout << "x = " << x << ", y = " << y; return ; } } } // If no such pair exists cout << -1 << endl; } // Driver code int main() { int n = 15; solve(n); return 0; } |
Java
// Java implementation to find the // values of x and y for the given // equation with integer N import java.util.*; class GFG{ // Function which find required x & y static void solve( int n) { // Upper limit of x & y, // if such x & y exists int upper_limit = ( int ) (Math.ceil (Math.pow(n, 1.0 / 4 ))); for ( int x = 0 ; x <= upper_limit; x++) { for ( int y = 0 ; y <= upper_limit; y++) { // num1 stores x^4 int num1 = x * x * x * x; // num2 stores y^4 int num2 = y * y * y * y; // If condition is satisfied // the print and return if (num1 - num2 == n) { System.out.print( "x = " + x + ", y = " + y); return ; } } } // If no such pair exists System.out.print(- 1 ); } // Driver code public static void main(String[] args) { int n = 15 ; solve(n); } } // This code is contributed by shivanisinghss2110 |
Python3
# Python3 implementation to find the # values of x and y for the given # equation with integer N from math import pow , ceil # Function which find required x & y def solve(n) : # Upper limit of x & y, # if such x & y exists upper_limit = ceil( pow (n, 1.0 / 4 )); for x in range (upper_limit + 1 ) : for y in range (upper_limit + 1 ) : # num1 stores x^4 num1 = x * x * x * x; # num2 stores y^4 num2 = y * y * y * y; # If condition is satisfied # the print and return if (num1 - num2 = = n) : print ( "x =" , x, ", y =" , y); return ; # If no such pair exists print ( - 1 ) ; # Driver code if __name__ = = "__main__" : n = 15 ; solve(n); # This code is contributed by AnkitRai01 |
C#
// C# implementation to find the // values of x and y for the given // equation with integer N using System; class GFG{ // Function which find required x & y static void solve( int n) { // Upper limit of x & y, // if such x & y exists int upper_limit = ( int ) (Math.Ceiling (Math.Pow(n, 1.0 / 4))); for ( int x = 0; x <= upper_limit; x++) { for ( int y = 0; y <= upper_limit; y++) { // num1 stores x^4 int num1 = x * x * x * x; // num2 stores y^4 int num2 = y * y * y * y; // If condition is satisfied // the print and return if (num1 - num2 == n) { Console.Write( "x = " + x + ", y = " + y); return ; } } } // If no such pair exists Console.Write(-1); } // Driver code public static void Main(String[] args) { int n = 15; solve(n); } } // This code is contributed by shivanisinghss2110 |
Javascript
<script> // Javascript implementation to find the // values of x and y for the given // equation with integer N // Function which find required x & y function solve(n) { // Upper limit of x & y, // if such x & y exists let upper_limit = Math.ceil(Math.pow(n, 1.0 / 4)); for (let x = 0; x <= upper_limit; x++) { for (let y = 0; y <= upper_limit; y++) { // num1 stores x^4 let num1 = x * x * x * x; // num2 stores y^4 let num2 = y * y * y * y; // If condition is satisfied // the print and return if (num1 - num2 == n) { document.write( "x = " + x + ", y = " + y); return ; } } } // If no such pair exists document.write(-1); } let n = 15; solve(n); </script> |
x = 2, y = 1
Time Complexity: O(sqrt(N))
Auxiliary space: O(1)
Another Approach:
In this implementation, we create an unordered map (hash table) to store the values of x^4 – n for each x from 0 to the upper limit. Then, we iterate through the possible values of y and check if y^4 – n is already in the hash table. If it is, we retrieve the corresponding value of x and print the solution. If no such pair exists, we print -1.
C++
#include <bits/stdc++.h> using namespace std; void solve( int n) { unordered_map< int , int > hashTable; // Calculate upper limit of x & y int upper_limit = ceil ( pow (n, 1.0/4)); // Store x^4 - n in hash table for ( int x = 0; x <= upper_limit; x++) { int x4 = x * x * x * x; hashTable[x4 - n] = x; } // Check if there is a y such that y^4 - x^4 = n for ( int y = 0; y <= upper_limit; y++) { int y4 = y * y * y * y; if (hashTable.find(y4) != hashTable.end()) { int x = hashTable[y4]; cout << "x = " << x << ", y = " << y << endl; return ; } } // If no such pair exists cout << -1 << endl; } int main() { int n = 15; solve(n); return 0; } |
x = 2, y = 1
Time Complexity: O(N^(1/4))
Auxiliary space: O(N^(1/4))
Please Login to comment...