Find the winner of the match | Multiple Queries
Given an array of pairs arr of size N which represents a game situation where the first player wins against the second player. Given multiple queries, each query contains two numbers, the task is to determine which one of them will win if they compete with each other.
NOTE:
- If A wins over B and B wins over C, then A will always win over C.
- If A wins over B and A wins over C, if there is a match against B and C and if we couldn’t determine the winner then the player with smaller number wins
Examples:
Input : arr[] = {{0, 1}, {0, 2}, {0, 3}, {1, 5}, {2, 5}, {3, 4}, {4, 5}, {6, 0}}
query[] = {{3, 5}, {1, 2}}
Output : 3
1
Explanation : 3 wins over 4 and 4 wins over 5. So, 3 is the winner in the first match.
We can’t determine the winner between 1 and 2. So, the player with a smaller number is the winner i.e., 1
Input : arr[] = {{0, 1}, {0, 2}, {0, 3}, {1, 5}, {2, 5}, {3, 4}, {4, 5}, {6, 0}}
query[] = {{0, 5}, {0, 6}}
Output : 0
6
Prerequisites: Topological Sort
Approach:
Let’s assume that all the inputs are valid. Now build a graph. If playerX wins over playerY then we add an edge from playerX to playerY. After building the graph do topological sorting. For every query of the form (x, y) we check which number x or y comes before in topological ordering and print the answer.
Below is the implementation of the above approach :
C++
// C++ program to find winner of the match #include <bits/stdc++.h> using namespace std; // Function to add edge between two nodes void add(vector< int > adj[], int u, int v) { adj[u].push_back(v); } // Function returns topological order of given graph vector< int > topo(vector< int > adj[], int n) { // Indeg vector will store // indegrees of all vertices vector< int > indeg(n, 0); for ( int i = 0; i < n; i++) { for ( auto x : adj[i]) indeg[x]++; } // Answer vector will have our // final topological order vector< int > answer; // Visited will be true if that // vertex has been visited vector< bool > visited(n, false ); // q will store the vertices // that have indegree equal to zero queue< int > q; for ( int i = 0; i < n; i++) { if (indeg[i] == 0) { q.push(i); visited[i] = true ; } } // Iterate till queue is not empty while (!q.empty()) { int u = q.front(); // Push the front of queue to answer answer.push_back(u); q.pop(); // For all neighbours of u, decrement // their indegree value for ( auto x : adj[u]) { indeg[x]--; // If indegree of any vertex becomes zero and // it is not marked then push it to queue if (indeg[x] == 0 && !visited[x]) { q.push(x); // Mark this vertex as visited visited[x] = true ; } } } // Return the resultant topological order return answer; } // Function to return the winner between u and v int who_wins(vector< int > topotable, int u, int v) { // Player who comes first wins for ( auto x : topotable) { if (x == u) return u; if (x == v) return v; } } // Driver code int main() { vector< int > adj[10]; // Total number of players int n = 7; // Build the graph // add(adj, x, y) means x wins over y add(adj, 0, 1); add(adj, 0, 2); add(adj, 0, 3); add(adj, 1, 5); add(adj, 2, 5); add(adj, 3, 4); add(adj, 4, 5); add(adj, 6, 0); // Resultant topological order in topotable vector< int > topotable = topo(adj, n); // Queries cout << who_wins(topotable, 3, 5) << endl; cout << who_wins(topotable, 1, 2) << endl; return 0; } |
Java
/*package whatever //do not write package name here */ import java.util.*; public class GFG{ // Function to add edge between two nodes static void add(List<Integer> adj[], int u, int v) { adj[u].add(v); } // Function returns topological order of given graph static List<Integer> topo(List<Integer> adj[], int n) { // Indeg vector will store // indegrees of all vertices int []indeg = new int [n]; for ( int i = 0 ; i < n; i++) { for ( int x : adj[i]) indeg[x]++; } // Answer vector will have our // final topological order List<Integer> answer = new ArrayList<Integer>(); // Visited will be true if that // vertex has been visited boolean [] visited = new boolean [n]; // q will store the vertices // that have indegree equal to zero Queue<Integer> q = new PriorityQueue<>(); for ( int i = 0 ; i < n; i++) { if (indeg[i] == 0 ) { q.add(i); visited[i] = true ; } } // Iterate till queue is not empty while (!q.isEmpty()) { int u = q.peek(); // Push the front of queue to answer answer.add(u); q.poll(); // For all neighbours of u, decrement // their indegree value for ( int x : adj[u]) { indeg[x]--; // If indegree of any vertex becomes zero and // it is not marked then push it to queue if (indeg[x] == 0 && !visited[x]) { q.add(x); // Mark this vertex as visited visited[x] = true ; } } } // Return the resultant topological order return answer; } // Function to return the winner between u and v static int who_wins(List<Integer> topotable, int u, int v) { // Player who comes first wins for ( int x : topotable) { if (x == u) return u; if (x == v) return v; } return 0 ; } public static void main(String[] args) { List<Integer> adj[] = new ArrayList[ 10 ]; for ( int i = 0 ; i < 10 ; i++) { adj[i] = new ArrayList<Integer>(); } // Total number of players int n = 7 ; // Build the graph // add(adj, x, y) means x wins over y add(adj, 0 , 1 ); add(adj, 0 , 2 ); add(adj, 0 , 3 ); add(adj, 1 , 5 ); add(adj, 2 , 5 ); add(adj, 3 , 4 ); add(adj, 4 , 5 ); add(adj, 6 , 0 ); // Resultant topological order in topotable List<Integer> topotable = topo(adj, n); // Queries System.out.println(who_wins(topotable, 3 , 5 )); System.out.println(who_wins(topotable, 1 , 2 )); } } // This code is contributed by aadityaburujwale. |
Python3
# Python3 program to find winner of the match # Function to add edge between two nodes def add(adj, u, v): adj[u].append(v) # Function returns topological order of given graph def topo(adj, n): # Indeg vector will store # indegrees of all vertices indeg = [ 0 for i in range (n)] for i in range (n): for x in adj[i]: indeg[x] + = 1 # Answer vector will have our # final topological order answer = [] # Visited will be true if that # vertex has been visited visited = [ False for i in range (n)] # q will store the vertices # that have indegree equal to zero q = [] for i in range (n): if (indeg[i] = = 0 ): q.append(i) visited[i] = True # Iterate till queue is not empty while ( len (q) ! = 0 ): u = q[ 0 ] # Push the front of queue to answer answer.append(u) q.remove(q[ 0 ]) # For all neighbours of u, decrement # their indegree value for x in adj[u]: indeg[x] - = 1 # If indegree of any vertex becomes zero and # it is not marked then push it to queue if (indeg[x] = = 0 and visited[x] = = False ): q.append(x) # Mark this vertex as visited visited[x] = True # Return the resultant topological order return answer # Function to return the winner between u and v def who_wins(topotable, u, v): # Player who comes first wins for x in topotable: if (x = = u): return u if (x = = v): return v # Driver code if __name__ = = '__main__' : adj = [[] for i in range ( 10 )] # Total number of players n = 7 # Build the graph # add(adj, x, y) means x wins over y add(adj, 0 , 1 ) add(adj, 0 , 2 ) add(adj, 0 , 3 ) add(adj, 1 , 5 ) add(adj, 2 , 5 ) add(adj, 3 , 4 ) add(adj, 4 , 5 ) add(adj, 6 , 0 ) # Resultant topological order in topotable topotable = topo(adj, n) # Queries print (who_wins(topotable, 3 , 5 )) print (who_wins(topotable, 1 , 2 )) # This code is contributed by Surendra_Gangwar |
C#
using System; using System.Collections.Generic; using System.Linq; class GFG { // Function to add edge between two nodes static void add(List< int >[] adj, int u, int v) { adj[u].Add(v); } // Function returns topological order of given graph static List< int > topo(List< int >[] adj, int n) { // Indeg vector will store // indegrees of all vertices int [] indeg = new int [n]; for ( int i = 0; i < n; i++) { foreach ( int x in adj[i]) indeg[x]++; } // Answer vector will have our // final topological order List< int > answer = new List< int >(); // Visited will be true if that // vertex has been visited bool [] visited = new bool [n]; // q will store the vertices // that have indegree equal to zero Queue< int > q = new Queue< int >(); for ( int i = 0; i < n; i++) { if (indeg[i] == 0) { q.Enqueue(i); visited[i] = true ; } } // Iterate till queue is not empty while (q.Count() != 0) { int u = q.Peek(); // Push the front of queue to answer answer.Add(u); q.Dequeue(); // For all neighbours of u, decrement // their indegree value foreach ( int x in adj[u]) { indeg[x]--; // If indegree of any vertex becomes zero // and it is not marked then push it to // queue if (indeg[x] == 0 && !visited[x]) { q.Enqueue(x); // Mark this vertex as visited visited[x] = true ; } } } // Return the resultant topological order return answer; } // Function to return the winner between u and v static int who_wins(List< int > topotable, int u, int v) { // Player who comes first wins foreach ( int x in topotable) { if (x == u) return u; if (x == v) return v; } return 0; } public static void Main( string [] args) { List< int >[] adj = new List< int >[ 10 ]; for ( int i = 0; i < 10; i++) { adj[i] = new List< int >(); } // Total number of players int n = 7; // Build the graph // add(adj, x, y) means x wins over y add(adj, 0, 1); add(adj, 0, 2); add(adj, 0, 3); add(adj, 1, 5); add(adj, 2, 5); add(adj, 3, 4); add(adj, 4, 5); add(adj, 6, 0); // Resultant topological order in topotable List< int > topotable = topo(adj, n); // Queries Console.WriteLine(who_wins(topotable, 3, 5)); Console.WriteLine(who_wins(topotable, 1, 2)); } } // This code is contributed by akashish__ |
Javascript
<script> brbr // JavaScript program to find winner of the match // Function to add edge between two nodes function add(adj, u, v){ adj[u].push(v) } // Function returns topological order of given graph function topo(adj, n){ // Indeg vector will store // indegrees of all vertices let indeg = new Array(n).fill(0) for (let i=0;i<n;i++){ for (let x of adj[i]){ indeg[x] += 1 } } // Answer vector will have our // final topological order let answer = [] // Visited will be true if that // vertex has been visited let visited = new Array(n).fill( false ) // q will store the vertices // that have indegree equal to zero let q = [] for (let i=0;i<n;i++){ if (indeg[i] == 0){ q.push(i) visited[i] = true } } // Iterate till queue is not empty while (q.length != 0){ let u = q.shift() // Push the front of queue to answer answer.push(u) // For all neighbours of u, decrement // their indegree value for (let x of adj[u]){ indeg[x] -= 1 // If indegree of any vertex becomes zero and // it is not marked then push it to queue if (indeg[x] == 0 && visited[x] == false ){ q.push(x) // Mark this vertex as visited visited[x] = true } } } // Return the resultant topological order return answer } // Function to return the winner between u and v function who_wins(topotable, u, v){ // Player who comes first wins for (let x of topotable){ if (x == u) return u if (x == v) return v } } // Driver code let adj = new Array(10).fill(0).map(()=> new Array()) // Total number of players let n = 7 // Build the graph // add(adj, x, y) means x wins over y add(adj, 0, 1) add(adj, 0, 2) add(adj, 0, 3) add(adj, 1, 5) add(adj, 2, 5) add(adj, 3, 4) add(adj, 4, 5) add(adj, 6, 0) // Resultant topological order in topotable let topotable = topo(adj, n) // Queries document.write(who_wins(topotable, 3, 5), "</br>" ) document.write(who_wins(topotable, 1, 2), "</br>" ) // This code is contributed by shinjanpatra </script> |
3 1
Time Complexity: O(V+E), where V is the number of vertices and E is the number of edges in the graph.
Auxiliary space: O(V+E)
Please Login to comment...