Find the value of k for the equation 2k2 + 144 = 0
Complex numbers are those with the formula a + ib, where a and b are real numbers and I (iota) is the imaginary component and represents (-1), and are often represented in rectangle or standard form. 10 + 5i, for example, is a complex number in which 10 represents the real component and 5i represents the imaginary part. Depending on the values of a and b, they might be wholly real or purely fictitious. When a = 0 in a + ib, ib is a totally imaginary number, and when b = 0, we get a, which is a strictly real number.
Some Powers of i
- i =
- i2 = −1
- i3 = i × i2 = i × −1 = −i
- i4 = i2 × i2 = −1 × −1 = 1
Find the value of k for the equation 2k2 + 144 = 0.
Solution:
2k2 + 144 = 0
⇒ 2k2 = −144
⇒ k2 = −72
⇒ k =
⇒ k =
⇒ k =
⇒ k = 6√2i
Similar Problems
Question 1. Find k if 2k2 + 64 = 0.
Solution:
2k2 + 64 = 0
⇒ 2k2 = −64
⇒ k2 = −32
⇒ k =
⇒ k =
⇒ k =
⇒ k = 4√2i
Question 2. Find k if 2k2 + 36 = 0.
Solution:
2k2 + 36 = 0
⇒ 2k2 = −36
⇒ k2 = −18
⇒ k =
⇒ k =
⇒ k =
⇒ k = 3√2i
Question 3. Find k if 2k2 + 400 = 0.
Solution:
2k2 + 400 = 0
⇒ 2k2 = −400
⇒ k2 = −200
⇒ k =
⇒ k =
⇒ k =
⇒ k = 10√2i
Question 4. Find k if 2k2 + 100 = 0.
Solution:
2k2 + 100 = 0
⇒ 2k2 = −100
⇒ k2 = −50
⇒ k =
⇒ k =
⇒ k =
⇒ k = 5√2i
Question 5. Find k if 2k2 + 256 = 0.
Solution:
2k2 + 256 = 0
⇒ 2k2 = −256
⇒ k2 = −128
⇒ k =
⇒ k =
⇒ k =
⇒ k = 8√2i