# Find the value of k for the equation 2k2 + 144 = 0

• Last Updated : 07 Feb, 2022

Complex numbers are those with the formula a + ib, where a and b are real numbers and I (iota) is the imaginary component and represents (-1), and are often represented in rectangle or standard form. 10 + 5i, for example, is a complex number in which 10 represents the real component and 5i represents the imaginary part. Depending on the values of a and b, they might be wholly real or purely fictitious. When a = 0 in a + ib, ib is a totally imaginary number, and when b = 0, we get a, which is a strictly real number.

Some Powers of i

• i =
• i2 = −1
• i3 = i × i2 = i × −1 = −i
• i4 = i2 × i2 = −1 × −1 = 1

Solution:

2k2 + 144 = 0

⇒ 2k2 = −144

⇒ k2 = −72

⇒ k =

⇒ k =

⇒ k =

⇒ k = 6√2i

### Similar Problems

Question 1. Find k if 2k2 + 64 = 0.

Solution:

2k2 + 64 = 0

⇒ 2k2 = −64

⇒ k2 = −32

⇒ k =

⇒ k =

⇒ k =

⇒ k = 4√2i

Question 2. Find k if 2k2 + 36 = 0.

Solution:

2k2 + 36 = 0

⇒ 2k2 = −36

⇒ k2 = −18

⇒ k =

⇒ k =

⇒ k =

⇒ k = 3√2i

Question 3. Find k if 2k2 + 400 = 0.

Solution:

2k2 + 400 = 0

⇒ 2k2 = −400

⇒ k2 = −200

⇒ k =

⇒ k =

⇒ k =

⇒ k = 10√2i

Question 4. Find k if 2k2 + 100 = 0.

Solution:

2k2 + 100 = 0

⇒ 2k2 = −100

⇒ k2 = −50

⇒ k =

⇒ k =

⇒ k =

⇒ k = 5√2i

Question 5. Find k if 2k2 + 256 = 0.

Solution:

2k2 + 256 = 0

⇒ 2k2 = −256

⇒ k2 = −128

⇒ k =

⇒ k =

⇒ k =

⇒ k = 8√2i

My Personal Notes arrow_drop_up
Recommended Articles
Page :