Find the valid integer from given String
Given a string str of size N, containing ‘ ‘, ‘.’, ‘-‘, ‘+’, and [‘0’-‘9’], the task is to find the valid integer from this string.
An integer is known as valid if follows the following rules:
- If str has leading whitespaces, ignore them.
- The first valid character should be ‘-‘, ‘+’, or [‘0’-‘9’]
- If no sign is given, treat the integer as positive
- If there are other invalid characters before the integer, print 0.
- If there are invalid characters after the integer, print the integer
- If the number is a decimal number, convert it into an integer
- Ignore any leading 0s
- Make the integer is in range [-2^31, 2^31-1], and if not, print the corresponding limit.
- Read in next the characters until the next non-digit character or the end of the input is reached. The rest of the string is ignored.
Examples:
Input: s = “28”
Output: 28
Explanation: As per the given rules 42 is a valid integer.Input: s = ” -2″
Output: -2
Explanation: Leading white spaces are ignoredInput: s = ” -one6″
Output: 0
Explanation: Invalid character before the integer
Approach: Create a variable to hold the final integer and make it long as the limit might get broken.
Traverse the string character by character, and keep flags for the first digit found and negative:
- If no digit is found yet, and:
- character is space, ignore
- character is ‘-‘ and negative flag is not set, set negative to -1
- character is ‘+’ and negative flag is not set, set negative to 1
- character is ‘-‘ or ‘+’ and negative flag is set, break out
- character is a character or ‘.’, break out
- character is a digit, set flag to true and store the digit in answer
- If digit is found and the flag is true:
- character is a digit, store the digit in answer
- If the limit is reached, set the corresponding side limit as the final answer
- If the character is anything other than digit, break out.
- Print the final value of the answer.
Below is the implementation of the above approach.
C++
// C++ code to implement the approach #include <bits/stdc++.h> using namespace std; // Function to find the valid integer int myatoi(string s) { int left = (-1) * pow (2, 31); int right = pow (2, 31) - 1; long ans = 0, neg = 0, flag = false ; for ( int i = 0; i < s.length(); i++) { if (s[i] == ' ' ) { if (flag) break ; else continue ; } else if (s[i] == '-' || s[i] == '+' ) { if (neg != 0) break ; else if (s[i] == '-' && neg == 0) { neg = -1; flag = true ; } else if (s[i] == '+' && neg == 0) { neg = 1; flag = true ; } } else if ((s[i] == '.' || !(s[i] - '0' >= 0 && s[i] - '0' < 10))) break ; else if (s[i] - '0' >= 0 && s[i] - '0' < 10) { flag = true ; neg = neg == 0 ? 1 : neg; if (!(ans < left || ans > right || ans * 10 + (s[i] - '0' ) < left || ans * 10 + (s[i] - '0' ) > right)) ans = ans * 10 + (s[i] - '0' ); else ans = neg == -1 ? left : right; } } return ans * neg; } // Driver code int main() { string str = " -2" ; cout << myatoi(str); return 0; } |
Java
// Java program for the above approach import java.io.*; import java.lang.*; import java.util.*; class GFG { // Function to find the valid integer static long myatoi(String s) { int left = ( int ) Math.pow( 2 , 31 ); left *= - 1 ; int right = ( int ) Math.pow( 2 , 31 ) - 1 ; long ans = 0 , neg = 0 ; Boolean flag = false ; for ( int i = 0 ; i < s.length(); i++) { if (s.charAt(i) == ' ' ) { if (flag == true ) break ; else continue ; } else if (s.charAt(i) == '-' || s.charAt(i) == '+' ) { if (neg != 0 ) break ; else if (s.charAt(i) == '-' && neg == 0 ) { neg = - 1 ; flag = true ; } else if (s.charAt(i) == '+' && neg == 0 ) { neg = 1 ; flag = true ; } } else if ((s.charAt(i) == '.' || !(s.charAt(i) - '0' >= 0 && s.charAt(i) - '0' < 10 ))) break ; else if (s.charAt(i) - '0' >= 0 && s.charAt(i) - '0' < 10 ) { flag = true ; neg = neg == 0 ? 1 : neg; if (!(ans < left || ans > right || ans * 10 + (s.charAt(i) - '0' ) < left || ans * 10 + (s.charAt(i) - '0' ) > right)) ans = ans * 10 + (s.charAt(i) - '0' ); else ans = neg == - 1 ? left : right; } } return ans * neg; } // Driver code public static void main (String[] args) { String str = " -2" ; System.out.print(myatoi(str)); } } // This code is contributed by hrithikgarg03188. |
Python3
# Python code for the above approach # Function to find the valid integer def myatoi(s): left = ( - 1 ) * ( 2 * * 31 ) right = ( 2 * * 31 ) - 1 ans = 0 neg = 0 flag = False for i in range ( len (s)): if (s[i] = = ' ' ): if (flag): break else : continue elif (s[i] = = '-' or s[i] = = '+' ): if (neg ! = 0 ): break elif (s[i] = = '-' and neg = = 0 ): neg = - 1 flag = True elif (s[i] = = '+' and neg = = 0 ): neg = 1 flag = True elif ((s[i] = = '.' or not ( ord (s[i]) - ord ( '0' ) > = 0 and ord (s[i]) - ord ( '0' ) < 10 ))): break elif ( ord (s[i]) - ord ( '0' ) > = 0 and ord (s[i]) - ord ( '0' ) < 10 ): flag = True neg = 1 if neg = = 0 else neg if ( not (ans < left or ans > right or ans * 10 + ( ord (s[i]) - ord ( '0' )) < left or ans * 10 + ( ord (s[i]) - ord ( '0' )) > right)): ans = ans * 10 + ( ord (s[i]) - ord ( '0' )) else : ans = left if neg = = - 1 else right return ans * neg # Driver code str = " -2" print (myatoi( str )) # This code is contributed by Saurabh Jaiswal |
C#
// C# program for the above approach using System; class GFG { // Function to find the valid integer static long myatoi( string s) { int left = ( int ) Math.Pow(2, 31); left *= -1; int right = ( int ) Math.Pow(2, 31) - 1; long ans = 0, neg = 0; bool flag = false ; for ( int i = 0; i < s.Length; i++) { if (s[i] == ' ' ) { if (flag == true ) break ; else continue ; } else if (s[i] == '-' || s[i] == '+' ) { if (neg != 0) break ; else if (s[i] == '-' && neg == 0) { neg = -1; flag = true ; } else if (s[i] == '+' && neg == 0) { neg = 1; flag = true ; } } else if ((s[i] == '.' || !(s[i] - '0' >= 0 && s[i] - '0' < 10))) break ; else if (s[i] - '0' >= 0 && s[i] - '0' < 10) { flag = true ; neg = neg == 0 ? 1 : neg; if (!(ans < left || ans > right || ans * 10 + (s[i] - '0' ) < left || ans * 10 + (s[i] - '0' ) > right)) ans = ans * 10 + (s[i] - '0' ); else ans = neg == -1 ? left : right; } } return ans * neg; } // Driver code public static void Main () { string str = " -2" ; Console.Write(myatoi(str)); } } // This code is contributed by Samim Hossain Mondal. |
Javascript
<script> // JavaScript code for the above approach // Function to find the valid integer function myatoi(s) { let left = (-1) * Math.pow(2, 31); let right = Math.pow(2, 31) - 1; let ans = 0, neg = 0, flag = false ; for (let i = 0; i < s.length; i++) { if (s[i] == ' ' ) { if (flag) break ; else continue ; } else if (s[i] == '-' || s[i] == '+' ) { if (neg != 0) break ; else if (s[i] == '-' && neg == 0) { neg = -1; flag = true ; } else if (s[i] == '+' && neg == 0) { neg = 1; flag = true ; } } else if ((s[i] == '.' || !(s[i].charCodeAt(0) - '0' .charCodeAt(0) >= 0 && s[i].charCodeAt(0) - '0' .charCodeAt(0) < 10))) break ; else if (s[i].charCodeAt(0) - '0' .charCodeAt(0) >= 0 && s[i].charCodeAt(0) - '0' .charCodeAt(0) < 10) { flag = true ; neg = neg == 0 ? 1 : neg; if (!(ans < left || ans > right || ans * 10 + (s[i].charCodeAt(0) - '0' .charCodeAt(0)) < left || ans * 10 + (s[i].charCodeAt(0) - '0' .charCodeAt(0)) > right)) ans = ans * 10 + (s[i].charCodeAt(0) - '0' .charCodeAt(0)); else ans = neg == -1 ? left : right; } } return ans * neg; } // Driver code let str = " -2" ; document.write(myatoi(str)); // This code is contributed by Potta Lokesh </script> |
Output
-2
Time Complexity: O(N)
Auxiliary Space: O(1)
Please Login to comment...