Find the sum of the series x(x+y) + x^2(x^2+y^2) +x^3(x^3+y^3)+ … + x^n(x^n+y^n)
Given a series where x, y and n take integral values. The task is to Find the sum till nth term of the given series.
Examples:
Input: x = 2, y = 2, n = 2 Output: 40 Input: x = 2, y = 4, n = 2 Output: 92
Approach: Given series is : .
Thus our problem reduces to finding sum of two GP series.
Below is the implementation of above approach:
C++
// CPP program to find the sum of series #include <bits/stdc++.h> using namespace std; // Function to return required sum int sum( int x, int y, int n) { // sum of first series int sum1 = ( pow (x, 2) * ( pow (x, 2 * n) - 1)) / ( pow (x, 2) - 1); // sum of second series int sum2 = (x * y * ( pow (x, n) * pow (y, n) - 1)) / (x * y - 1); return sum1 + sum2; } // Driver Code int main() { int x = 2, y = 2, n = 2; // function call to print sum cout << sum(x, y, n); return 0; } |
Java
// Java program to find the sum of series public class GFG { // Function to return required sum static int sum( int x, int y, int n) { // sum of first series int sum1 = ( int ) (( Math.pow(x, 2 ) * (Math.pow(x, 2 * n) - 1 )) / (Math.pow(x, 2 ) - 1 )); // sum of second series int sum2 = ( int ) ((x * y * (Math.pow(x, n) * Math.pow(y, n) - 1 )) / (x * y - 1 )); return sum1 + sum2; } // Driver code public static void main (String args[]){ int x = 2 , y = 2 , n = 2 ; // function call to print sum System.out.println(sum(x, y, n)); } // This code is contributed by ANKITRAI1 } |
Python3
# Python3 program to find the sum of series # Function to return required sum def sum (x,y,n): # sum of first series sum1 = ((x * * 2 ) * (x * * ( 2 * n) - 1 )) / / (x * * 2 - 1 ) # sum of second series sum2 = (x * y * (x * * n * y * * n - 1 )) / / (x * y - 1 ) return (sum1 + sum2) # Driver Code if __name__ = = '__main__' : x = 2 y = 2 n = 2 # function call to print sum print ( sum (x, y, n)) # this code is contributed by sahilshelangia |
C#
// C# program to find the sum of series using System; class GFG { // Function to return required sum static int sum( int x, int y, int n) { // sum of first series int sum1 = ( int ) ((Math.Pow(x, 2) * (Math.Pow(x, 2 * n) - 1)) / (Math.Pow(x, 2) - 1)); // sum of second series int sum2 = ( int ) ((x * y * (Math.Pow(x, n) * Math.Pow(y, n) - 1)) / (x * y - 1)); return sum1 + sum2; } // Driver code public static void Main () { int x = 2, y = 2, n = 2; // function call to print sum Console.Write(sum(x, y, n)); } } // This code is contributed by ChitraNayal |
PHP
<?php // PHP program to find the // sum of series // Function to return required sum function sum( $x , $y , $n ) { //sum of first series $sum1 = (pow( $x , 2) * (pow( $x , 2 * $n ) - 1)) / (pow( $x , 2) - 1); // sum of second series $sum2 = ( $x * $y * (pow( $x , $n ) * pow( $y , $n ) - 1)) / ( $x * $y - 1); return $sum1 + $sum2 ; } // Driver code $x = 2; $y = 2; $n = 2; // function call to print sum echo sum( $x , $y , $n ); // This code is contributed // by Shashank_Sharma ?> |
Javascript
<script> // java script program to find the // sum of series // Function to return required sum function sum(x, y, n) { //sum of first series sum1 = (Math.pow(x, 2) * (Math.pow(x, 2 * n) - 1)) / (Math.pow(x, 2) - 1); // sum of second series sum2 = (x * y * (Math.pow(x, n) * Math.pow(y, n) - 1)) / (x * y - 1); return sum1 + sum2; } // Driver code let x = 2; let y = 2; let n = 2; // function call to print sum document.write(sum(x, y, n)); // This code is contributed // by bobby </script> |
Output:
40
Time Complexity: O(log(n))
Auxiliary Space: O(1)
Please Login to comment...