Find the sum of the first half and second half elements of an array
Given an array arr of size N. The task is to find the sum of the first half (N/2) elements and the second half elements (N – N/2) of an array.
Examples:
Input : arr[] = {20, 30, 60, 10, 25, 15, 40} Output : 110, 90 Sum of first N/2 elements 20 + 30 + 60 is 110
Input : arr[] = {50, 35, 20, 15} Output : 85, 35
Approach:
- Initialize SumFirst and SumSecond as 0.
- Traverse the given array.
- Now add elements in SumFirst if the current index is less than N/2 otherwise add in SumSecond.
Below is the implementation of the above approach:
C
// C program to find the sum of the first half elements and // second half elements of the array. Function to find find // the sum of the first half elements and second half // elements of the array. #include <stdio.h> void sum_of_elements( int arr[], int n) { int sum_of_first = 0, sum_of_second = 0; // adding for ( int i = 0; i < n; i++) { // adding first half if (i < n / 2) { sum_of_first += arr[i]; } // adding second half else { sum_of_second += arr[i]; } } // printing answer printf ( "Sum of first half elements is %d\n" , sum_of_first); printf ( "Sum of second half elements is %d\n" , sum_of_second); } // Driver code int main() { int arr[] = { 20, 30, 60, 10, 25, 15, 40 }; int n = sizeof (arr) / sizeof (arr[0]); // function call sum_of_elements(arr, n); return 0; } |
C#
// C# program to count pairs // whose sum divisible by 'K' using System; class GFG { public static void sum_of_elements( int [] arr, int n) { int sumfirst = 0, sumsecond = 0; for ( int i = 0; i < n; i++) { // Add elements in first half sum if (i < n / 2) { sumfirst += arr[i]; } // Add elements in the second half sum else { sumsecond += arr[i]; } } Console.WriteLine( "Sum of first half elements is " + sumfirst); Console.WriteLine( "Sum of second half elements is " + sumsecond); } // Driver code static public void Main() { int [] arr = { 20, 30, 60, 10, 25, 15, 40 }; int n = arr.Length; // Function call sum_of_elements(arr, n); } } // This code is contributed by nidhiva |
C++
// C++ program to find the sum of the first half // elements and second half elements of an array #include <bits/stdc++.h> using namespace std; // Function to find the sum of the first half // elements and second half elements of an array void sum_of_elements( int arr[], int n) { int sumfirst = 0, sumsecond = 0; for ( int i = 0; i < n; i++) { // Add elements in first half sum if (i < n / 2) sumfirst += arr[i]; // Add elements in the second half sum else sumsecond += arr[i]; } cout << "Sum of first half elements is " << sumfirst << endl; cout << "Sum of second half elements is " << sumsecond << endl; } // Driver Code int main() { int arr[] = { 20, 30, 60, 10, 25, 15, 40 }; int n = sizeof (arr) / sizeof (arr[0]); // Function call sum_of_elements(arr, n); return 0; } |
Java
// Java program to count pairs // whose sum divisible by 'K' import java.util.*; class GFG { public static void sum_of_elements( int [] arr, int n) { int sumfirst = 0 , sumsecond = 0 ; for ( int i = 0 ; i < n; i++) { // Add elements in first half sum if (i < n / 2 ) { sumfirst += arr[i]; } // Add elements in the second half sum else { sumsecond += arr[i]; } } System.out.println( "Sum of first half elements is " + sumfirst); System.out.println( "Sum of second half elements is " + sumsecond); } // Driver code public static void main(String[] args) { int [] arr = { 20 , 30 , 60 , 10 , 25 , 15 , 40 }; int n = arr.length; // Function call sum_of_elements(arr, n); } } // This code is contributed by Princi Singh |
Python3
# Python3 program to find the sum of # the first half elements and # second half elements of an array # Function to find the sum of # the first half elements and # second half elements of an array def sum_of_elements(arr, n): sumfirst = 0 sumsecond = 0 for i in range (n): # Add elements in first half sum if (i < n / / 2 ): sumfirst + = arr[i] # Add elements in the second half sum else : sumsecond + = arr[i] print ( "Sum of first half elements is" , sumfirst, end = "\n" ) print ( "Sum of second half elements is" , sumsecond, end = "\n" ) # Driver Code arr = [ 20 , 30 , 60 , 10 , 25 , 15 , 40 ] n = len (arr) # Function call sum_of_elements(arr, n) # This code is contributed # by Akanksha Rai |
Javascript
<script> // Javascript program to count pairs // whose sum divisible by 'K' function sum_of_elements(arr , n) { var sumfirst = 0, sumsecond = 0; for (i = 0; i < n; i++) { // Add elements in first half sum if (i < parseInt(n / 2)) { sumfirst += arr[i]; } // Add elements in the second half sum else { sumsecond += arr[i]; } } document.write( "Sum of first half elements is " + sumfirst+ "<br/>" ); document.write( "Sum of second half elements is " + sumsecond+ "<br/>" ); } // Driver code var arr = [ 20, 30, 60, 10, 25, 15, 40 ]; var n = arr.length; // Function call sum_of_elements(arr, n); // This code contributed by umadevi9616 </script> |
Output:
Sum of first half elements is 110 Sum of second half elements is 90
Time complexity: O(N), as we are using a loop to traverse the array.
Auxiliary Space: O(1), as we are not using any extra space.
Approach 2: Traversing half of the array length.
The idea is to traverse half the length of the array and calculate the first sum and second sum simultaneously by
- Initializing firstSum=0 and LastSum=0 and also traversing the array starting from the 0th index to N/2.
- Adding values of arr[i] to the firstSum.
- Adding values of arr[i+n/2] to the secondSum.
- An edge case occurs when the length of the array is odd. In this case, the first sum has the sum of the first N/2 elements while secondSum has the sum of the remaining elements excluding the last element (since the loop runs for n/2 times the last element is excluded) Hence we take care of this exclusively.
Below is the code for the same.
C#
// c# code to find the sum of first n/2 and last n- n/2 // elements of an array by traversing the array length/2 // times using System; public class GFG { public static void Main() { int [] arr = { 20, 30, 60, 10, 25, 15, 40 }; int n = arr.Length; // Function call sum(arr, n); } // function definition public static void sum( int [] arr, int n) { int firstSum = 0, secondSum = 0; // initializing the firstSum and secondSum variables for ( int i = 0; i < n / 2; i++) { // adding elements of the first half to firstSum firstSum += arr[i]; // adding elements of the second half to // secondSum secondSum += arr[i + n / 2]; } // checking for the odd case length if (n % 2 != 0) secondSum += arr[n - 1]; // printing the sums Console.WriteLine( "Sum of first half elements is " + firstSum); Console.WriteLine( "Sum of second half elements is " + secondSum); } } |
C++
// c++ code to find the sum of first n/2 and last n- n/2 // elements of an array by traversing the array length/2 // times #include <bits/stdc++.h> using namespace std; // Function definition void sum( int arr[], int n) { int firstSum = 0, secondSum = 0; // initializing the firstSum and secondSum variables for ( int i = 0; i < n / 2; i++) { // adding elements of the first half to firstSum firstSum += arr[i]; // adding elements of the second half to secondSum secondSum += arr[i + n / 2]; } // checking for the odd case length if (n % 2 != 0) secondSum += arr[n - 1]; // printing the sums cout << "Sum of first half elements is " << firstSum << endl; cout << "Sum of second half elements is " << secondSum << endl; } // Driver Code int main() { int arr[] = { 20, 30, 60, 10, 25, 15, 40 }; int n = sizeof (arr) / sizeof (arr[0]); // Function call sum(arr, n); return 0; } |
Java
// Java code to find the sum of first n/2 and last n- n/2 // elements of an array by traversing the array length/2 // times import java.util.*; public class Main { // Function definition static void sum( int arr[], int n) { int firstSum = 0 , secondSum = 0 ; // initializing the firstSum and secondSum variables for ( int i = 0 ; i < n / 2 ; i++) { // adding elements of the first half to firstSum firstSum += arr[i]; // adding elements of the second half to // secondSum secondSum += arr[i + n / 2 ]; } // checking for the odd case length if (n % 2 != 0 ) secondSum += arr[n - 1 ]; // printing the sums System.out.println( "Sum of first half elements is " + firstSum); System.out.println( "Sum of second half elements is " + secondSum); } // Driver Code public static void main(String[] args) { int arr[] = { 20 , 30 , 60 , 10 , 25 , 15 , 40 }; int n = arr.length; // Function call sum(arr, n); } } |
Python
# python code to find the sum of first n/2 and last n- n/2 # elements of an array by traversing the array length/2 # times # function definition def sum (arr, n): first_sum, second_sum = 0 , 0 # initializing the first_sum and second_sum variables for i in range (n / / 2 ): # adding elements of the first half to first_sum first_sum + = arr[i] # adding elements of the second half to second_sum second_sum + = arr[i + n / / 2 ] # checking for the odd case length if n % 2 ! = 0 : second_sum + = arr[n - 1 ] # printing the sums print ( 'Sum of first half elements is' , first_sum) print ( "Sum of second half elements is" , second_sum) # Driver Code arr = [ 20 , 30 , 60 , 10 , 25 , 15 , 40 ] n = len (arr) # Function call sum (arr, n) |
Javascript
// JavaScript code to find the sum of first n/2 and last n- n/2 // elements of an array by traversing the array length/2 // times // Function definition function sum(arr, n) { let firstSum = 0, secondSum = 0; // initializing the firstSum and secondSum variables for (let i = 0; i < Math.floor(n / 2); i++) { // adding elements of the first half to firstSum firstSum += arr[i]; // adding elements of the second half to secondSum secondSum += arr[i + Math.floor(n / 2)]; } // checking for the odd case length if (n % 2 !== 0) secondSum += arr[n - 1]; // printing the sums console.log(`Sum of first half elements is ${firstSum}`); console.log(`Sum of second half elements is ${secondSum}`); } // Driver Code const arr = [20, 30, 60, 10, 25, 15, 40]; const n = arr.length; // Function call sum(arr, n); |
Output:
Sum of first half elements is 110 Sum of second half elements is 90
Time complexity: O(N/2)
Auxiliary Space: O(1)
Please Login to comment...