Find the sum of the ascii values of characters which are present at prime positions
Given string str of size N, the task is to find the sum of all ASCII values of the characters which are present at prime positions.
Examples:
Input: str = “abcdef”
Output: 298
‘b’, ‘c’ and ‘e’ are the only characters which are
at prime positions i.e. 2, 3 and 5 respectively.
And sum of their ASCII values is 298.
Input: str = “geeksforgeeks”
Output: 644
Approach: An efficient approach is to traverse through the whole string and find if the particular position is prime or not. If the position of the current character is prime then add the ASCII value of the character to the answer.
Below is the implementation of the above approach:
C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; // Function that returns true // if n is prime bool isPrime( int n) { if (n == 0 || n == 1) return false ; for ( int i = 2; i * i <= n; i++) if (n % i == 0) return false ; return true ; } // Function to return the sum // of the ascii values of the characters // which are present at prime positions int sumAscii(string str, int n) { // To store the sum int sum = 0; // For every character for ( int i = 0; i < n; i++) { // If current position is prime // then add the ASCII value of the // character at the current position if (isPrime(i + 1)) sum += ( int )(str[i]); } return sum; } // Driver code int main() { string str = "geeksforgeeks" ; int n = str.size(); cout << sumAscii(str, n); return 0; } |
Java
// Java implementation of the approach import java.util.*; class GFG { // Function that returns true // if n is prime static boolean isPrime( int n) { if (n == 0 || n == 1 ) { return false ; } for ( int i = 2 ; i * i <= n; i++) { if (n % i == 0 ) { return false ; } } return true ; } // Function to return the sum // of the ascii values of the characters // which are present at prime positions static int sumAscii(String str, int n) { // To store the sum int sum = 0 ; // For every character for ( int i = 0 ; i < n; i++) { // If current position is prime // then add the ASCII value of the // character at the current position if (isPrime(i + 1 )) { sum += ( int ) (str.charAt(i)); } } return sum; } // Driver code public static void main(String[] args) { String str = "geeksforgeeks" ; int n = str.length(); System.out.println(sumAscii(str, n)); } } // This code contributed by Rajput-Ji |
Python3
# Python3 implementation of the approach from math import sqrt # Function that returns true # if n is prime def isPrime(n) : if (n = = 0 or n = = 1 ) : return False ; for i in range ( 2 , int (sqrt(n)) + 1 ) : if (n % i = = 0 ): return False ; return True ; # Function to return the sum # of the ascii values of the characters # which are present at prime positions def sumAscii(string, n) : # To store the sum sum = 0 ; # For every character for i in range (n) : # If current position is prime # then add the ASCII value of the # character at the current position if (isPrime(i + 1 )) : sum + = ord (string[i]); return sum ; # Driver code if __name__ = = "__main__" : string = "geeksforgeeks" ; n = len (string); print (sumAscii(string, n)); # This code is contributed by AnkitRai01 |
C#
// C# implementation of the approach using System; class GFG { // Function that returns true // if n is prime static bool isPrime( int n) { if (n == 0 || n == 1) { return false ; } for ( int i = 2; i * i <= n; i++) { if (n % i == 0) { return false ; } } return true ; } // Function to return the sum // of the ascii values of the characters // which are present at prime positions static int sumAscii( string str, int n) { // To store the sum int sum = 0; // For every character for ( int i = 0; i < n; i++) { // If current position is prime // then add the ASCII value of the // character at the current position if (isPrime(i + 1)) { sum += ( int ) (str[i]); } } return sum; } // Driver code public static void Main() { string str = "geeksforgeeks" ; int n = str.Length; Console.WriteLine(sumAscii(str, n)); } } // This code contributed by anuj_67.. |
Javascript
<script> // Javascript implementation of the approach // Function that returns true // if n is prime function isPrime(n) { if (n == 0 || n == 1) return false ; for (let i = 2; i * i <= n; i++) if (n % i == 0) return false ; return true ; } // Function to return the sum // of the ascii values of the characters // which are present at prime positions function sumAscii(str, n) { // To store the sum let sum = 0; // For every character for (let i = 0; i < n; i++) { // If current position is prime // then add the ASCII value of the // character at the current position if (isPrime(i + 1)) sum += str.charCodeAt(i); } return sum; } // Driver code let str = "geeksforgeeks" ; let n = str.length; document.write(sumAscii(str, n)); </script> |
644
Time Complexity: O(n*sqrt(n)), where n represents the size of the given string.
Auxiliary Space: O(1), no extra space is required, so it is a constant.
Please Login to comment...