 Open in App
Not now

# Find the sum of series 3, -6, 12, -24 . . . upto N terms

• Last Updated : 23 Jun, 2022

Given an integer N. The task is to find the sum upto N terms of the given series:

3, -6, 12, -24, … upto N terms

Examples

Input : N = 5
Output : Sum = 33

Input : N = 20
Output : Sum = -1048575

On observing the given series, it can be seen that the ratio of every term with their previous term is same which is -2. Hence the given series is a GP(Geometric Progression) series.
So, when r < 0.
In above GP series the first term i:e a = 3 and common ratio i:e r = (-2).
Therefore, Thus, .
Below is the implementation of above approach:

## C++

 //C++ program to find sum upto N term of the series: // 3, -6, 12, -24, .....   #include #include using namespace std; //calculate sum upto N term of series   class gfg {     public:     int Sum_upto_nth_Term(int n)     {         return (1 - pow(-2, n));     } }; // Driver code int main() {     gfg g;     int N = 5;     cout<

## Java

 //Java program to find sum upto N term of the series: // 3, -6, 12, -24, .....   import java.util.*; //calculate sum upto N term of series   class solution {   static int Sum_upto_nth_Term(int n) {     return (1 -(int)Math.pow(-2, n)); }   // Driver code public static void main (String arr[]) {     int N = 5;     System.out.println(Sum_upto_nth_Term(N)); }   }

## Python

 # Python program to find sum upto N term of the series: # 3, -6, 12, -24, .....   # calculate sum upto N term of series def Sum_upto_nth_Term(n):     return (1 - pow(-2, n))   # Driver code N = 5 print(Sum_upto_nth_Term(N))

## C#

 // C# program to find sum upto  // N term of the series: // 3, -6, 12, -24, .....   // calculate sum upto N term of series class GFG {   static int Sum_upto_nth_Term(int n) {     return (1 -(int)System.Math.Pow(-2, n)); }   // Driver code public static void Main() {     int N = 5;     System.Console.WriteLine(Sum_upto_nth_Term(N)); } }   // This Code is contributed by mits

## PHP

 

## Javascript

 

Output:

33`

Time Complexity: O(logn), where n is the given integer.

Auxiliary Space: O(1), no extra space is required, so it is a constant.

My Personal Notes arrow_drop_up
Related Articles