Find the size of Largest Subset with positive Bitwise AND
Given an array arr[] consisting of N positive integers, the task is to find the largest size of the subset of the array arr[] with positive Bitwise AND.
Note : If there exist more than one such subsets then return size of only one subset.
Examples:
Input: arr[] = [7, 13, 8, 2, 3]
Output: 3
Explanation:
The subsets having Bitwise AND positive are {7,13,3} and {7,2,3} are of length 3, which is of maximum length among all possible subsets.Input: arr[] = [1, 2, 4, 8]
Output: 1
Approach: The given problem can be solved by counting the number of set bits at each corresponding bits position for all array elements and then the count of the maximum of set bits at any position is the maximum count of subset required because the Bitwise AND of all those elements is always positive.
Illustration :
7 --> 00111 13 --> 01101 8 --> 01000 2 --> 00010 3 --> 00011 ------ 02233 <-- Evident BitWise AND bit(Most number of 1's in bit grid) From above it is clearly evident that we can have maximum of 3 bitwise combinations where combinations are listed below as follows: {7,13,3} {7,2,3}
- Initialize an array, say bit[] of size 32 that stores the count of set bits at each ith bit position.
- Traverse the given array and for each element, say arr[i] increment the frequency of the ith bit in the array bit[] if the ith bit is set in arr[i].
- After the above steps, print the maximum of the array bit[] to print the maximum size of the subset.
Below is the implementation of the above approach:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Function to find the largest possible // subset having Bitwise AND positive void largestSubset( int a[], int N) { // Stores the number of set bits // at each bit position int bit[32] = { 0 }; // Traverse the given array arr[] for ( int i = 0; i < N; i++) { // Current bit position int x = 31; // Loop till array element // becomes zero while (a[i] > 0) { // If the last bit is set if (a[i] & 1 == 1) { // Increment frequency bit[x]++; } // Divide array element by 2 a[i] = a[i] >> 1; // Decrease the bit position x--; } } // Size of the largest possible subset cout << *max_element(bit, bit + 32); } // Driver Code int main() { int arr[] = { 7, 13, 8, 2, 3 }; int N = sizeof (arr) / sizeof (arr[0]); largestSubset(arr, N); return 0; } |
Java
// Java program for the above approach import java.io.*; class GFG { static void largestSubset( int a[], int N) { // Stores the number of set bits // at each bit position int bit[] = new int [ 32 ]; // Traverse the given array arr[] for ( int i = 0 ; i < N; i++) { // Current bit position int x = 31 ; // Loop till array element // becomes zero while (a[i] > 0 ) { // If the last bit is set if (( int )(a[i] & 1 ) == ( int ) 1 ) { // Increment frequency bit[x]++; } // Divide array element by 2 a[i] = a[i] >> 1 ; // Decrease the bit position x--; } } // Size of the largest possible subset int max = Integer.MIN_VALUE; for ( int i = 0 ; i < 32 ; i++) { max = Math.max(max, bit[i]); } System.out.println(max); } // Driver code public static void main (String[] args) { int arr[] = { 7 , 13 , 8 , 2 , 3 }; int N = arr.length; largestSubset(arr, N); } } // This code is contributed by Dharanendra L V. |
Python3
# Python 3 program for the above approach # Function to find the largest possible # subset having Bitwise AND positive def largestSubset(a, N): # Stores the number of set bits # at each bit position bit = [ 0 for i in range ( 32 )] # Traverse the given array arr[] for i in range (N): # Current bit position x = 31 # Loop till array element # becomes zero while (a[i] > 0 ): # If the last bit is set if (a[i] & 1 = = 1 ): # Increment frequency bit[x] + = 1 # Divide array element by 2 a[i] = a[i] >> 1 # Decrease the bit position x - = 1 # Size of the largest possible subset print ( max (bit)) # Driver Code if __name__ = = '__main__' : arr = [ 7 , 13 , 8 , 2 , 3 ] N = len (arr) largestSubset(arr, N) # This code is contributed by ipg016107. |
C#
// C# program for the above approach using System; class GFG { static void largestSubset( int [] a, int N) { // Stores the number of set bits // at each bit position int [] bit = new int [32]; // Traverse the given array arr[] for ( int i = 0; i < N; i++) { // Current bit position int x = 31; // Loop till array element // becomes zero while (a[i] > 0) { // If the last bit is set if (( int )(a[i] & 1) == ( int )1) { // Increment frequency bit[x]++; } // Divide array element by 2 a[i] = a[i] >> 1; // Decrease the bit position x--; } } // Size of the largest possible subset int max = Int32.MinValue; for ( int i = 0; i < 32; i++) { max = Math.Max(max, bit[i]); } Console.WriteLine(max); } // Driver code public static void Main( string [] args) { int [] arr = { 7, 13, 8, 2, 3 }; int N = arr.Length; largestSubset(arr, N); } } // This code is contributed by ukasp. |
Javascript
<script> // JavaScript Program to implement // the above approach // Function to find the largest possible // subset having Bitwise AND positive function largestSubset(a, N) { // Stores the number of set bits // at each bit position let bit = new Array(32).fill(0); // Traverse the given array arr[] for (let i = 0; i < N; i++) { // Current bit position let x = 31; // Loop till array element // becomes zero while (a[i] > 0) { // If the last bit is set if (a[i] & 1 == 1) { // Increment frequency bit[x]++; } // Divide array element by 2 a[i] = a[i] >> 1; // Decrease the bit position x--; } } // Size of the largest possible subset let max = Number.MIN_VALUE; for (let i = 0; i < 32; i++) { max = Math.max(max, bit[i]); } document.write(max); } // Driver Code let arr = [7, 13, 8, 2, 3]; let N = arr.length; largestSubset(arr, N); // This code is contributed by Potta Lokesh </script> |
3
Time Complexity: O(N)
- [(32)* (length of array) where 32 is constant time, so as per recurrence tree the time complexity is of N order
Auxiliary Space: O(1)
Please Login to comment...