Find the Platform at which the given Train arrives
Given a 2D array arr[][3] consisting of information of N trains where arr[i][0] is the train number, arr[i][1] is the arrival time, and arr[i][2] is the duration of stoppage time. Given another integer F representing the train number, the task is to find the platform number on which the train with train number F arrives according to the following rules:
- Platform numbering starts from 1 and there is an infinite number of platforms.
- The platform which is freed earlier is allocated to the next train.
- If two or more platforms are freed at the same time then the train arrives at the platform with the lowest platform number.
- If two or more trains arriving at the same time, then the train with a smaller train number is allocated first.
Examples:
Input: arr[] = {{112567, 1, 2}, {112563, 3, 3}, {112569, 4, 7}, {112560, 9, 3}}, F = 112569
Output: 1
Explanation:
Below is the order of the arrival of trains:
Train Platform Leaving Time
112567 1 4
112563 2 7
112569 1 12
112560 2 13Therefore, the train with train number 112569 arrives at platform number 1.
Input: arr[] = {{112567, 2, 1}, {112563, 5, 5}, {112569, 7, 3}, {112560, 3, 7}}, F = 112569
Output: 3
Approach: The given problem can be solved by using the priority queue. Follow the steps below to solve this problem:
- Sort the given array arr[] of N trains according to the arrival time of the trains.
- Initialize a priority queue, say PQ of pairs {PlatformNumber, time} that implements the min-heap according to the least departure time. Insert the {platform number, time} i.e., {1, 0} in the priority queue.
- Initialize a HashMap, say M that stores the platform number on which any train arrives.
- Traverse the given array arr[] and perform the following steps:
- Pop the top platform of the PQ and store them in free_platform[].
- If the arrival time of the current train is at least the departure time of the popped platform, then update the departure time of the popped platform as the (sum of the arrival and the stoppage time + 1) and insert the current status of the platform in PQ and the current platform number of the current train in the HashMap M.
- Otherwise, add the new platform entry to the PQ and the current platform number of the current train in the HashMap M.
- After completing the above steps, print the platform number associated with the train number F in the HashMap M.
Below is the implementation of the above approach:
C++
#include <bits/stdc++.h> using namespace std; // Stores the information for each // train as Objects class Train { public : // Stores the train number string train_num; // Stores the arrival time int arrival_time; // Stores the stoppage time int stoppage_time; // Constructor Train(string train_num, int arrival_time, int stoppage_time) { this ->train_num = train_num; this ->arrival_time = arrival_time; this ->stoppage_time = stoppage_time; } }; // custom search comparator bool sortArrivalTime(Train &o1, Train &o2) { if (o1.arrival_time == o2.arrival_time) return o1.train_num < o2.train_num; return (o1.arrival_time < o2.arrival_time); } // Function to find the platform // on which train F arrives static int findPlatformOf(vector<Train> trains, int n, string F) { // Sort the array arr[] according // to the arrival time sort(trains.begin(), trains.end(), sortArrivalTime); // Stores the platforms that // is in currently in use priority_queue<vector< int >> pq; // Insert the platform number 1 // with departure time as 0 vector< int > temp = {1, 0}; pq.push(temp); // Store the platform number // on which train arrived map<string, int > schedule; // Traverse the given array for ( auto t : trains) { // Pop the top platform of // the priority queue vector< int > free_platform = pq.top(); pq.pop(); // If arrival time of the train // >= freeing time of the platform if (t.arrival_time >= free_platform[1]) { // Update the train status free_platform[1] = t.arrival_time + t.stoppage_time + 1; // Add the current platform // to the pq pq.push(free_platform); // Add the platform // number to the HashMap schedule[t.train_num] = free_platform[0]; } // Otherwise, add a new platform // for the current train else { // Update the priority queue pq.push(free_platform); // Get the platform number int platform_num = pq.size() + 1; // Add the platform to // the priority queue vector< int > temp = {platform_num, t.arrival_time + t.stoppage_time + 1}; pq.push(temp); // Add the platform // number to the HashMap schedule[t.train_num] = platform_num; } } // Return the platform on // which F train arrived return schedule[F]; } // Driver Code signed main() { vector<Train> trains; trains.push_back(Train( "112567" , 2, 1)); trains.push_back(Train( "112569" , 5, 5)); trains.push_back(Train( "112563" , 5, 3)); trains.push_back(Train( "112560" , 3, 7)); string F = "112563" ; cout << (findPlatformOf(trains, trains.size(), F)); return 0; } // This code is contributed by sdeadityasharma. |
Java
// Java program for the above approach import java.util.*; // Stores the information for each // train as Objects class Train { // Stores the train number String train_num; // Stores the arrival time int arrival_time; // Stores the stoppage time int stoppage_time; // Constructor Train(String train_num, int arrival_time, int stoppage_time) { this .train_num = train_num; this .arrival_time = arrival_time; this .stoppage_time = stoppage_time; } } public class GFG { // Function to find the platform // on which train F arrives static int findPlatformOf( ArrayList<Train> trains, int n, String F) { // Sort the array arr[] according // to the arrival time Collections.sort( trains, (a, b) -> a.arrival_time==b.arrival_time ? Integer.parseInt(a.train_num)-Integer.parseInt(b.train_num) : a.arrival_time - b.arrival_time); // Stores the platforms that // is in currently in use PriorityQueue< int []> pq = new PriorityQueue<>( (a, b) -> a[ 1 ] == b[ 1 ] ? a[ 0 ] - b[ 0 ] : a[ 1 ] - b[ 1 ]); // Insert the platform number 1 // with departure time as 0 pq.add( new int [] { 1 , 0 }); // Store the platform number // on which train arrived HashMap<String, Integer> schedule = new HashMap<>(); // Traverse the given array for (Train t : trains) { // Pop the top platform of // the priority queue int [] free_platform = pq.poll(); // If arrival time of the train // >= freeing time of the platform if (t.arrival_time >= free_platform[ 1 ]) { // Update the train status free_platform[ 1 ] = t.arrival_time + t.stoppage_time + 1 ; // Add the current platform // to the pq pq.add(free_platform); // Add the platform // number to the HashMap schedule.put(t.train_num, free_platform[ 0 ]); } // Otherwise, add a new platform // for the current train else { // Update the priority queue pq.add(free_platform); // Get the platform number int platform_num = pq.size() + 1 ; // Add the platform to // the priority queue pq.add( new int [] { platform_num, t.arrival_time + t.stoppage_time + 1 }); // Add the platform // number to the HashMap schedule.put(t.train_num, platform_num); } } // Return the platform on // which F train arrived return schedule.get(F); } // Driver Code public static void main(String[] args) { ArrayList<Train> trains = new ArrayList<>(); trains.add( new Train( "112567" , 2 , 1 )); trains.add( new Train( "112569" , 5 , 5 )); trains.add( new Train( "112563" , 5 , 3 )); trains.add( new Train( "112560" , 3 , 7 )); String F = "112563" ; System.out.println( findPlatformOf( trains, trains.size(), F)); } } |
Python3
from queue import PriorityQueue # Stores the information for each # train as Objects class Train: def __init__( self , train_num, arrival_time, stoppage_time): # Stores the train number self .train_num = train_num # Stores the arrival time self .arrival_time = arrival_time # Stores the stoppage time self .stoppage_time = stoppage_time # custom search comparator def sortArrivalTime(train): return (train.arrival_time, train.train_num) # Function to find the platform # on which train F arrives def findPlatformOf(trains, n, F): # Sort the array arr[] according # to the arrival time trains.sort(key = sortArrivalTime) # Stores the platforms that # is in currently in use pq = PriorityQueue() # Insert the platform number 1 # with departure time as 0 temp = [ 1 , 0 ] pq.put(( - temp[ 1 ], temp)) # Store the platform number # on which train arrived schedule = {} # Traverse the given array for t in trains: # Pop the top platform of # the priority queue free_platform = pq.get()[ 1 ] # If arrival time of the train # >= freeing time of the platform if t.arrival_time > = free_platform[ 1 ]: # Update the train status free_platform[ 1 ] = t.arrival_time + t.stoppage_time + 1 # Add the current platform # to the pq pq.put(( - free_platform[ 1 ], free_platform)) # Add the platform # number to the dictionary schedule[t.train_num] = free_platform[ 0 ] # Otherwise, add a new platform # for the current train else : # Update the priority queue pq.put(( - free_platform[ 1 ], free_platform)) # Get the platform number platform_num = pq.qsize() + 1 # Add the platform to # the priority queue temp = [platform_num, t.arrival_time + t.stoppage_time + 1 ] pq.put(( - temp[ 1 ], temp)) # Add the platform # number to the dictionary schedule[t.train_num] = platform_num # Return the platform on # which F train arrived return schedule[F] # Driver Code if __name__ = = "__main__" : trains = [] trains.append(Train( "112567" , 2 , 1 )) trains.append(Train( "112569" , 5 , 5 )) trains.append(Train( "112563" , 5 , 3 )) trains.append(Train( "112560" , 3 , 7 )) F = "112563" print (findPlatformOf(trains, len (trains), F)) # This code is contriibuted by Aditya Sharma |
C#
using System; using System.Collections.Generic; using System.Linq; public class Train { public string train_num; public int arrival_time; public int stoppage_time; public Train( string train_num, int arrival_time, int stoppage_time) { this .train_num = train_num; this .arrival_time = arrival_time; this .stoppage_time = stoppage_time; } } public class PlatformComparator : IComparer< int []> { public int Compare( int [] platform1, int [] platform2) { if (platform1[1] == platform2[1]) { return platform1[0].CompareTo(platform2[0]); } return platform1[1].CompareTo(platform2[1]); } } public class Program { public static int FindPlatformOf(List<Train> trains, int n, string F) { trains.Sort((x, y) => x.arrival_time.CompareTo(y.arrival_time)); var pq = new SortedSet< int []>( new PlatformComparator()); var temp = new int [] { 1, 0 }; pq.Add(temp); var schedule = new Dictionary< string , int >(); foreach ( var t in trains) { var free_platform = pq.Min; pq.Remove(free_platform); if (t.arrival_time >= free_platform[1]) { free_platform[1] = t.arrival_time + t.stoppage_time + 1; pq.Add(free_platform); schedule[t.train_num] = free_platform[0]; } else { pq.Add(free_platform); int platform_num = pq.Count + 1; var new_platform = new int [] { platform_num, t.arrival_time + t.stoppage_time + 1 }; pq.Add(new_platform); schedule[t.train_num] = platform_num; } } return schedule[F]; } public static void Main() { var trains = new List<Train>() { new Train( "112567" , 2, 1), new Train( "112569" , 5, 5), new Train( "112563" , 5, 3), new Train( "112560" , 3, 7), }; string F = "112563" ; Console.WriteLine(FindPlatformOf(trains, trains.Count, F)); } } |
Javascript
// JavaScript code for the approach // Define Train class class Train { // Constructor to initialize the train number, arrival // time, and stoppage time constructor(train_num, arrival_time, stoppage_time) { this .train_num = train_num; this .arrival_time = arrival_time; this .stoppage_time = stoppage_time; } } // Define PlatformComparator class to compare platforms // based on their availability times class PlatformComparator { // Compare function to compare two platforms compare(platform1, platform2) { // If the availability times of both platforms are // same, compare based on platform number if (platform1[1] == platform2[1]) { return platform1[0] - platform2[0]; } // Otherwise, compare based on availability time return platform1[1] - platform2[1]; } } // Function to find the platform of a given train based on // its arrival time and stoppage time function findPlatformOf(trains, n, F) { // Sort the trains based on their arrival times trains.sort((x, y) => x.arrival_time - y.arrival_time); // Create a set to keep track of available platforms, // and add the first platform with number 1 and // availability time 0 let pq = new Set(); let temp = [ 1, 0 ]; pq.add(temp); // Create a dictionary to store the platform number for // each train let schedule = {}; // Iterate over all the trains for (let t of trains) { // Find the platform with the earliest availability // time let free_platform = [... pq][0]; pq. delete (free_platform); // If the train can use the platform immediately, // update the availability time of the platform and // assign it to the train if (t.arrival_time >= free_platform[1]) { free_platform[1] = t.arrival_time + t.stoppage_time + 1; pq.add(free_platform); schedule[t.train_num] = free_platform[0]; } else { // If the train cannot use the platform // immediately, add a new platform, update its // availability time, and assign it to the train pq.add(free_platform); let platform_num = pq.size + 1; let new_platform = [ platform_num, t.arrival_time + t.stoppage_time + 1 ]; pq.add(new_platform); schedule[t.train_num] = platform_num; } } // Return the platform number of the desired train return schedule[F]; } // Create an array of Train objects let trains = [ new Train( "112567" , 2, 1), new Train( "112569" , 5, 5), new Train( "112563" , 5, 3), new Train( "112560" , 3, 7), ]; // Define the train number for which the platform needs to // be found let F = "112563" ; // Call the findPlatformOf function with the given trains, // length of trains array, and desired train number console.log(findPlatformOf(trains, trains.length, F)); |
3
Time Complexity: O(N * log N)
Auxiliary Space: O(N)
Please Login to comment...