Find the Nth term of the series 3,10,21,36,55…
Given a positive integer N, the task is to find the Nth term of the series
3, 10, 21, 36, 55…till N terms
Examples:
Input: N = 4
Output: 36Input: N = 6
Output: 78
Approach:
From the given series, find the formula for Nth term-
1st term = 1 * ( 2(1) + 1 ) = 3
2nd term = 2 * ( 2(2) + 1 ) = 10
3rd term = 3 * ( 2(3) + 1 ) = 21
4th term = 4 * ( 2(4) + 1 ) = 36
.
.
Nth term = N * ( 2(N) + 1 )
The Nth term of the given series can be generalized as-
TN = N * ( 2(N) + 1 )
Illustration:
Input: N = 10
Output: 210
Explanation:
TN = N * ( 2(N) + 1 )
= 10 * ( 2(10) + 1 )
= 210
Below is the implementation of the above approach-
C++
// C++ program to implement // the above approach #include <iostream> using namespace std; // Function to return // Nth term of the series int nTh( int n) { return n * (2 * n + 1); } // Driver code int main() { int N = 10; cout << nTh(N) << endl; return 0; } |
C
// C program to implement // the above approach #include <stdio.h> // Function to return // Nth term of the series int nTh( int n) { return n * (2 * n + 1); } // Driver code int main() { // Value of N int N = 10; printf ( "%d" , nTh(N)); return 0; } |
Java
// Java program to implement // the above approach import java.io.*; class GFG { // Driver code public static void main(String[] args) { int N = 10 ; System.out.println(nTh(N)); } // Function to return // Nth term of the series public static int nTh( int n) { return n * ( 2 * n + 1 ); } } |
Python
# Python program to implement # the above approach # Function to return # Nth term of the series def nTh(n): return n * ( 2 * n + 1 ) # Driver code N = 10 print (nTh(N)) # This code is contributed by Samim Hossain Mondal. |
C#
using System; public class GFG { // Function to return // Nth term of the series public static int nTh( int n) { return n * (2 * n + 1); } static public void Main (){ // Code int N = 10; Console.Write(nTh(N)); } } // This code is contributed by Potta Lokesh |
Javascript
<script> // JavaScript code for the above approach // Function to return // Nth term of the series function nTh(n) { return n * (2 * n + 1); } // Driver code let N = 10; document.write(nTh(N) + '<br>' ); // This code is contributed by Potta Lokesh </script> |
210
Time Complexity: O(1) // since no loop is used the algorithm takes up constant time to perform the operations
Auxiliary Space: O(1) // since no extra array is used so the space taken by the algorithm is constant
Please Login to comment...