Skip to content
Related Articles

Related Articles

Find the Missing Number in a sorted array

Improve Article
Save Article
  • Difficulty Level : Easy
  • Last Updated : 06 May, 2022
Improve Article
Save Article

Given a list of n-1 integers and these integers are in the range of 1 to n. There are no duplicates in list. One of the integers is missing in the list. Write an efficient code to find the missing integer. 

Examples: 

Input : arr[] = [1, 2, 3, 4, 6, 7, 8]
Output : 5

Input : arr[] = [1, 2, 3, 4, 5, 6, 8, 9]
Output : 7

Naive approach: One Simple solution is to apply methods discussed for finding the missing element in an unsorted array. Time complexity of this solution is O(n).

Efficient approach: It is based on the divide and conquer algorithm that we have seen in binary search, the concept behind this solution is that the elements appearing before the missing element will have ar[i] – i = 1 and those appearing after the missing element will have ar[i] – i = 2.

Below is the implementation of the above approach:

C++




// A binary search based program to find the
// only missing number in a sorted array of
// distinct elements within limited range.
#include <iostream>
using namespace std;
 
int search(int ar[], int size)
{
    // Extreme cases
    if (ar[0] != 1)
        return 1;
    if (ar[size - 1] != (size + 1))
        return size + 1;
 
    int a = 0, b = size - 1;
    int mid;
    while ((b - a) > 1) {
        mid = (a + b) / 2;
        if ((ar[a] - a) != (ar[mid] - mid))
            b = mid;
        else if ((ar[b] - b) != (ar[mid] - mid))
            a = mid;
    }
    return (ar[a] + 1);
}
 
int main()
{
    int ar[] = { 1, 2, 3, 4, 5, 6, 8 };
    int size = sizeof(ar) / sizeof(ar[0]);
    cout << "Missing number:" << search(ar, size);
}
 
// This code is contributed by Pushpesh Raj


Java




// A binary search based program
// to find the only missing number
// in a sorted array of distinct
// elements within limited range.
import java.io.*;
 
class GFG {
    static int search(int ar[], int size)
    {
        // Extreme cases
        if (ar[0] != 1)
            return 1;
        if (ar[size - 1] != (size + 1))
            return size + 1;
 
        int a = 0, b = size - 1;
        int mid = 0;
        while ((b - a) > 1) {
            mid = (a + b) / 2;
            if ((ar[a] - a) != (ar[mid] - mid))
                b = mid;
            else if ((ar[b] - b) != (ar[mid] - mid))
                a = mid;
        }
        return (ar[a] + 1);
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        int ar[] = { 1, 2, 3, 4, 5, 6, 8 };
        int size = ar.length;
        System.out.println("Missing number: "
                           + search(ar, size));
    }
}
 
// This code is contributed
// by inder_verma.


Python3




# A binary search based program to find
# the only missing number in a sorted
# in a sorted array of distinct elements
# within limited range
 
 
def search(ar, size):
   # Extreme cases
    if(ar[0] != 1):
        return 1
    if(ar[size-1] != (size+1)):
        return size+1
 
    a = 0
    b = size - 1
    mid = 0
    while b > a + 1:
        mid = (a + b) // 2
        if (ar[a] - a) != (ar[mid] - mid):
            b = mid
        elif (ar[b] - b) != (ar[mid] - mid):
            a = mid
    return ar[a] + 1
 
 
# Driver Code
a = [1, 2, 3, 4, 5, 6, 8]
n = len(a)
 
print("Missing number:", search(a, n))
 
# This code is contributed
# by Mohit Kumar


C#




// A binary search based program
// to find the only missing number
// in a sorted array of distinct
// elements within limited range.
using System;
 
class GFG {
    static int search(int[] ar, int size)
    {
        // Extreme cases
        if (ar[0] != 1)
            return 1;
        if (ar[size - 1] != (size + 1))
            return size + 1;
 
        int a = 0, b = size - 1;
        int mid = 0;
        while ((b - a) > 1) {
            mid = (a + b) / 2;
            if ((ar[a] - a) != (ar[mid] - mid))
                b = mid;
            else if ((ar[b] - b) != (ar[mid] - mid))
                a = mid;
        }
        return (ar[a] + 1);
    }
 
    // Driver Code
    static public void Main(String[] args)
    {
        int[] ar = { 1, 2, 3, 4, 5, 6, 8 };
        int size = ar.Length;
        Console.WriteLine("Missing number: "
                          + search(ar, size));
    }
}
 
// This code is contributed
// by Arnab Kundu


PHP




<?php
// A binary search based program to find the
// only missing number in a sorted array of
// distinct elements within limited range.
 
function search($ar, $size)
{
   //Extreme cases
    if($ar[0]!=1)
        return 1;
    if($ar[$size-1]!=($size+1))
        return $size+1;
   
    $a = 0;
    $b = $size - 1;
    $mid;
    while (($b - $a) > 1)
    {
        $mid = (int)(($a + $b) / 2);
        if (($ar[$a] - $a) != ($ar[$mid] -
                                   $mid))
            $b = $mid;
        else if (($ar[$b] - $b) != ($ar[$mid] -
                                        $mid))
            $a = $mid;
    }
    return ($ar[$a] + 1);
}
 
// Driver Code
$ar = array(1, 2, 3, 4, 5, 6, 8 );
$size = sizeof($ar);
echo "Missing number: ",
     search($ar, $size);
 
// This code is contributed by ajit.
?>


Javascript




<script>
// A binary search based program
// to find the only missing number
// in a sorted array of distinct
// elements within limited range.
 
function findMissing(arr) {
  var size = arr.length;
 //Extreme cases
    if(ar[0]!=1)
        return 1;
    if(ar[size-1]!=(size+1))
        return size+1;
         
  var low = 0;
  var high = arr.length;
  while (low <= high) {
    var mid = Math.floor((low+high)/2);
    if ((arr[mid]-mid === 1) && (arr[mid+1]-(mid+1) === 2)) return arr[mid]+1;
    if (arr[mid]-mid === 1) {
      low = mid+1;
    } else {
      high = mid-1;
    }
  }
  return -1;
}
 
// Driver Code
 
let ar = [1, 2, 3, 4, 5, 6, 8];
document.write("Missing number: " +findMissing(ar));
 
// This code is contributed by mohit kumar 29.
</script>


Output

Missing number:7

Time Complexity: O(log(N)), where N is the length of given array
Auxiliary Space: O(1)


My Personal Notes arrow_drop_up
Related Articles

Start Your Coding Journey Now!