Find the maximum length of the prefix
Given an array arr[] of N integers where all elements of the array are from the range [0, 9] i.e. a single digit, the task is to find the maximum length of the prefix of this array such that removing exactly one element from the prefix will make the occurrence of the remaining elements in the prefix same.
Examples:
Input: arr[] = {1, 1, 1, 2, 2, 2}
Output: 5
Required prefix is {1, 1, 1, 2, 2}
After removing 1, every element will have equal frequency i.e. {1, 1, 2, 2}Input: arr[] = {1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5}
Output: 13Input: arr[] = {10, 2, 5, 4, 1}
Output: 5
Approach: Iterate over all the prefixes and check for each prefix if we can remove an element so that each element has same occurrence. In order to satisfy this condition, one of the following conditions must hold true:
- There is only one element in the prefix.
- All the elements in the prefix have the occurrence of 1.
- Every element has the same occurrence, except for exactly one element which has occurrence of 1.
- Every element has the same occurrence, except for exactly one element which has the occurrence exactly 1 more than any other elements.
Below is the implementation of the above approach:
C++14
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; // Function to return the maximum // length of the required prefix int Maximum_Length(vector< int > a) { // Array to store the frequency // of each element of the array int counts[11] = {0}; // Iterating for all the elements int ans = 0; for ( int index = 0; index < a.size(); index++) { // Update the frequency of the // current element i.e. v counts[a[index]] += 1; // Sorted positive values // from counts array vector< int > k; for ( auto i : counts) if (i != 0) k.push_back(i); sort(k.begin(), k.end()); // If current prefix satisfies // the given conditions if (k.size() == 1 || (k[0] == k[k.size() - 2] && k.back() - k[k.size() - 2] == 1) || (k[0] == 1 and k[1] == k.back())) ans = index; } // Return the maximum length return ans + 1; } // Driver code int main() { vector< int > a = { 1, 1, 1, 2, 2, 2 }; cout << (Maximum_Length(a)); } // This code is contributed by grand_master |
Java
// Java implementation of the approach import java.util.*; public class Main { // Function to return the maximum // length of the required prefix public static int Maximum_Length(Vector<Integer> a) { // Array to store the frequency // of each element of the array int [] counts = new int [ 11 ]; // Iterating for all the elements int ans = 0 ; for ( int index = 0 ; index < a.size(); index++) { // Update the frequency of the // current element i.e. v counts[a.get(index)] += 1 ; // Sorted positive values // from counts array Vector<Integer> k = new Vector<Integer>(); for ( int i : counts) if (i != 0 ) k.add(i); Collections.sort(k); // If current prefix satisfies // the given conditions if (k.size() == 1 || (k.get( 0 ) == k.get(k.size() - 2 ) && k.get(k.size() - 1 ) - k.get(k.size() - 2 ) == 1 ) || (k.get( 0 ) == 1 && k.get( 1 ) == k.get(k.size() - 1 ))) ans = index; } // Return the maximum length return ans + 1 ; } // Driver code public static void main(String[] args) { Vector<Integer> a = new Vector<Integer>(); a.add( 1 ); a.add( 1 ); a.add( 1 ); a.add( 2 ); a.add( 2 ); a.add( 2 ); System.out.println(Maximum_Length(a)); } } // This code is contributed by divyeshrabadiya07 |
Python3
# Python3 implementation of the approach # Function to return the maximum # length of the required prefix def Maximum_Length(a): # Array to store the frequency # of each element of the array counts = [ 0 ] * 11 # Iterating for all the elements for index, v in enumerate (a): # Update the frequency of the # current element i.e. v counts[v] + = 1 # Sorted positive values from counts array k = sorted ([i for i in counts if i]) # If current prefix satisfies # the given conditions if len (k) = = 1 or (k[ 0 ] = = k[ - 2 ] and k[ - 1 ] - k[ - 2 ] = = 1 ) or (k[ 0 ] = = 1 and k[ 1 ] = = k[ - 1 ]): ans = index # Return the maximum length return ans + 1 # Driver code if __name__ = = "__main__" : a = [ 1 , 1 , 1 , 2 , 2 , 2 ] n = len (a) print (Maximum_Length(a)) |
C#
// C# implementation of the approach using System; using System.Collections.Generic; class GFG { // Function to return the maximum // length of the required prefix static int Maximum_Length(List< int > a) { // Array to store the frequency // of each element of the array int [] counts = new int [11]; // Iterating for all the elements int ans = 0; for ( int index = 0; index < a.Count; index++) { // Update the frequency of the // current element i.e. v counts[a[index]] += 1; // Sorted positive values // from counts array List< int > k = new List< int >(); foreach ( int i in counts) if (i != 0) k.Add(i); k.Sort(); // If current prefix satisfies // the given conditions if (k.Count == 1 || (k[0] == k[k.Count - 2] && k[k.Count - 1] - k[k.Count - 2] == 1) || (k[0] == 1 && k[1] == k[k.Count - 1])) ans = index; } // Return the maximum length return ans + 1; } static void Main() { List< int > a = new List< int >( new int []{ 1, 1, 1, 2, 2, 2 }); Console.Write(Maximum_Length(a)); } } // This code is contributed by divyesh072019 |
Javascript
<script> // Javascript implementation of the approach // Function to return the maximum // length of the required prefix function Maximum_Length(a) { // Array to store the frequency // of each element of the array let counts = new Array(11); counts.fill(0); // Iterating for all the elements let ans = 0; for (let index = 0; index < a.length; index++) { // Update the frequency of the // current element i.e. v counts[a[index]] += 1; // Sorted positive values // from counts array let k = []; for (let i = 0; i < counts.length; i++) { if (counts[i] != 0) { k.push(i); } } k.sort( function (a, b){ return a - b}); // If current prefix satisfies // the given conditions if (k.length == 1 || (k[0] == k[k.length - 2] && k[k.length - 1] - k[k.length - 2] == 1) || (k[0] == 1 && k[1] == k[k.length - 1])) ans = index; } // Return the maximum length return (ans); } let a = [ 1, 1, 1, 2, 2, 2 ]; document.write(Maximum_Length(a)); // This code is contributed by suresh07. </script> |
5
Time Complexity: O(aloga * a) where a is the length of the array
Auxiliary Space: O(a) where a is the length of the array
Approach:
1. Initialize the maximum prefix length to be the length of the first string in the set.
2. Compare the first character of each subsequent string with the corresponding character of the first string.
3. If the characters match, increment a prefix counter.
4. If the characters do not match, update the maximum prefix length to be the minimum of the current maximum prefix length and the prefix counter.
5. Repeat steps 2-4 for all strings in the set.
6. The final maximum prefix length is the result.
C
#include <stdio.h> #include <string.h> int max_prefix_length( char ** strings, int num_strings) { int max_prefix = strlen (strings[0]); for ( int i = 1; i < num_strings; i++) { int prefix_len = 0; while (strings[i][prefix_len] == strings[0][prefix_len]) { prefix_len++; } max_prefix = (prefix_len < max_prefix) ? prefix_len : max_prefix; } return max_prefix; } int main() { char * strings[] = { "hello" , "hell" , "help" , "helm" , "he" }; int num_strings = 5; int max_prefix = max_prefix_length(strings, num_strings); printf ( "The maximum prefix length is %d\n" , max_prefix); return 0; } |
C++
#include <bits/stdc++.h> using namespace std; int max_prefix_length( char ** strings, int num_strings) { int max_prefix = std:: strlen (strings[0]); for ( int i = 1; i < num_strings; i++) { int prefix_len = 0; while (strings[i][prefix_len] == strings[0][prefix_len]) { prefix_len++; } max_prefix = (prefix_len < max_prefix) ? prefix_len : max_prefix; } return max_prefix; } int main() { char * strings[] = { "hello" , "hell" , "help" , "helm" , "he" }; int num_strings = 5; int max_prefix = max_prefix_length(strings, num_strings); cout << "The maximum prefix length is " << max_prefix << std::endl; return 0; } |
Python3
def max_prefix_length(strings): max_prefix = len (strings[ 0 ]) for i in range ( 1 , len (strings)): prefix_len = 0 while (prefix_len < len (strings[i]) and prefix_len < len (strings[ 0 ]) and strings[i][prefix_len] = = strings[ 0 ][prefix_len]): prefix_len + = 1 max_prefix = min (max_prefix, prefix_len) return max_prefix strings = [ "hello" , "hell" , "help" , "helm" , "he" ] max_prefix = max_prefix_length(strings) print ( "The maximum prefix length is" , max_prefix) |
C#
using System; class Program { static int MaxPrefixLength( string [] strings) { int maxPrefix = strings[0].Length; for ( int i = 1; i < strings.Length; i++) { int prefixLen = 0; while (prefixLen < strings[i].Length && prefixLen < strings[0].Length && strings[i][prefixLen] == strings[0][prefixLen]) { prefixLen++; } maxPrefix = Math.Min(maxPrefix, prefixLen); } return maxPrefix; } static void Main() { string [] strings = { "hello" , "hell" , "help" , "helm" , "he" }; int maxPrefix = MaxPrefixLength(strings); Console.WriteLine( "The maximum prefix length is {0}" , maxPrefix); } } |
Javascript
// Javascript code addition // A function which calculates maximum prefix length. function max_prefix_length(strings, num_strings) { // make first string length as max_prefix let max_prefix = strings[0].length; for (let i = 1; i < num_strings; i++) { // calculate for curr prefix length. let prefix_len = 0; while (strings[i][prefix_len] == strings[0][prefix_len]) { prefix_len++; } // update max prefix if prefix length is less than max_prefix. max_prefix = (prefix_len < max_prefix) ? prefix_len : max_prefix; } return max_prefix; } // Declare a strings array let strings = [ "hello" , "hell" , "help" , "helm" , "he" ]; // size of strings array let num_strings = 5; // calculating max prefix length let max_prefix = max_prefix_length(strings, num_strings); // printing the maximum prefix length console.log( "The maximum prefix length is " + max_prefix); // The code is contributed by Nidhi goel. |
The maximum prefix length is 2
Time complexity: O(N*M), where N is the number of strings and M is the length of the longest string in the set.
Space complexity: O(1), as we only use a fixed number of variables regardless of the size of the input.
Please Login to comment...