Find the length of the median of a Triangle if length of sides are given
Given the length of all three sides of a triangle as a, b and c. The task is to calculate the length of the median of the triangle.
A median of a triangle is a line segment joining a vertex to the midpoint of the opposite side, thus bisecting that side.
Examples:
Input: a = 8, b = 10, c = 13
Output: 10.89
Input: a = 4, b = 3, c = 5
Output: 3.61
Approach: The idea is to use Apollonius’s theorem to solve this problem.
Apollonius’s Theorem states that “the sum of the squares of any two sides of a triangle equals twice the square on half the third side and twice the square on the median bisecting the third side”.
From the above figure, According to Apollonius’s Theorem we have:
where a, b, and c are the length of sides of the triangle
and m is the length of median of the triangle on side 2*a
Therefore, the length of the median of a triangle from the above equation is given by:
Below is the implementation of the above approach:
C++
// C++ program to find the length of the // median using sides of the triangle #include<bits/stdc++.h> using namespace std; // Function to return the length of // the median using sides of triangle float median( int a, int b, int c) { float n = sqrt (2 * b * b + 2 * c * c - a * a) / 2; return n; } // Driver code int main() { int a, b, c; a = 4; b = 3; c = 5; // Function call float ans = median(a, b, c); // Print final answer with 2 // digits after decimal cout << fixed << setprecision(2) << ans; return 0; } // This code is contributed by himanshu77 |
Java
// Java program to find the length of the // median using sides of the triangle import java.util.*; class GFG{ // Function to return the length of // the median using sides of triangle public static float median( int a, int b, int c) { float n = ( float )(Math.sqrt( 2 * b * b + 2 * c * c - a * a) / 2 ); return n; } // Driver code public static void main(String[] args) { int a, b, c; a = 4 ; b = 3 ; c = 5 ; // Function call float ans = median(a, b, c); // Print final answer with 2 // digits after decimal System.out.println(String.format( "%.2f" , ans)); } } // This code is contributed by divyeshrabadiya07 |
Python3
# Python3 implementation to Find the # length of the median using sides # of the triangle import math # Function to return the length of # the median using sides of triangle. def median(a, b, c): n = ( 1 / 2 ) * math.sqrt( 2 * (b * * 2 ) + 2 * (c * * 2 ) - a * * 2 ) return n # Driver Code a = 4 b = 3 c = 5 # Function Call ans = median(a, b, c) # Print the final answer print ( round (ans, 2 )) |
C#
// C# program to find the length of the // median using sides of the triangle using System; class GFG{ // Function to return the length of // the median using sides of triangle public static float median( int a, int b, int c) { float n = ( float )(Math.Sqrt(2 * b * b + 2 * c * c - a * a) / 2); return n; } // Driver code public static void Main(String[] args) { int a, b, c; a = 4; b = 3; c = 5; // Function call float ans = median(a, b, c); // Print readonly answer with 2 // digits after decimal Console.WriteLine(String.Format( "{0:F2}" , ans)); } } // This code is contributed by gauravrajput1 |
Javascript
<script> // JavaScript program to find the length of the // median using sides of the triangle // Function to return the length of // the median using sides of triangle function median(a, b, c) { let n = (Math.sqrt(2 * b * b + 2 * c * c - a * a) / 2); return n; } // Driver Code let a, b, c; a = 4; b = 3; c = 5; // Function call let ans = median(a, b, c); // Print final answer with 2 // digits after decimal document.write(ans, 2); </script> |
3.61
Time Complexity: O(log(n)) because using inbuilt sqrt function
Space Complexity: O(1)
Please Login to comment...