Find the largest pair sum in an unsorted array
Given an unsorted of distinct integers, find the largest pair sum in it. For example, the largest pair sum in {12, 34, 10, 6, 40} is 74.
Difficulty Level: Rookie
Brute Force Approach:
Brute force approach to solve this problem would be to use two nested loops to iterate over all possible pairs of integers in the array, compute their sum and keep track of the maximum sum encountered so far. The time complexity of this approach would be O(n^2).
Below is implementation of the above approach:
C++
// C++ program to find largest pair sum in a given array #include <bits/stdc++.h> using namespace std; /* Function to return largest pair sum. Assumes that there are at-least two elements in arr[] */ int findLargestSumPair( int arr[], int n) { int maxSum = INT_MIN; for ( int i = 0; i < n - 1; i++) { for ( int j = i + 1; j < n; j++) { int sum = arr[i] + arr[j]; if (sum > maxSum) { maxSum = sum; } } } return maxSum; } /* Driver program to test above function */ int main() { int arr[] = { 12, 34, 10, 6, 40 }; int n = sizeof (arr) / sizeof (arr[0]); cout << "Max Pair Sum is " << findLargestSumPair(arr, n); return 0; } |
Java
import java.util.*; public class Main { /* Function to return largest pair sum. Assumes that there are at-least two elements in arr[] */ static int findLargestSumPair( int [] arr, int n) { int maxSum = Integer.MIN_VALUE; for ( int i = 0 ; i < n - 1 ; i++) { for ( int j = i + 1 ; j < n; j++) { int sum = arr[i] + arr[j]; if (sum > maxSum) { maxSum = sum; } } } return maxSum; } /* Driver program to test above function */ public static void main(String[] args) { int [] arr = { 12 , 34 , 10 , 6 , 40 }; int n = arr.length; System.out.println( "Max Pair Sum is " + findLargestSumPair(arr, n)); } } |
Python3
import sys # Function to return largest pair sum. Assumes that # there are at-least two elements in arr[] def findLargestSumPair(arr, n): maxSum = - sys.maxsize - 1 for i in range ( 0 , n - 1 ): for j in range (i + 1 , n): sum = arr[i] + arr[j] if ( sum > maxSum): maxSum = sum return maxSum # Driver program to test above function if __name__ = = '__main__' : arr = [ 12 , 34 , 10 , 6 , 40 ] n = len (arr) print ( "Max Pair Sum is" , findLargestSumPair(arr, n)) |
C#
using System; class Program { /* Function to return largest pair sum. Assumes that there are at-least two elements in arr[] */ static int FindLargestSumPair( int [] arr, int n) { int maxSum = int .MinValue; for ( int i = 0; i < n - 1; i++) { for ( int j = i + 1; j < n; j++) { int sum = arr[i] + arr[j]; if (sum > maxSum) { maxSum = sum; } } } return maxSum; } // Driver code static void Main( string [] args) { int [] arr = { 12, 34, 10, 6, 40 }; int n = arr.Length; Console.WriteLine( "Max Pair Sum is " + FindLargestSumPair(arr, n)); } } |
Max Pair Sum is 74
Time Complexity: O(N^2)
Auxiliary Space: O(1)
This problem mainly boils down to finding the largest and second-largest element in an array. We can find the largest and second-largest in O(n) time by traversing the array once.
1) Initialize the first = Integer.MIN_VALUE second = Integer.MIN_VALUE 2) Loop through the elements a) If the current element is greater than the first max element, then update second max to the first max and update the first max to the current element. 3) Return (first + second)
Below is the implementation of the above algorithm:
C++
// C++ program to find largest pair sum in a given array #include <iostream> using namespace std; /* Function to return largest pair sum. Assumes that there are at-least two elements in arr[] */ int findLargestSumPair( int arr[], int n) { // Initialize first and second largest element int first, second; if (arr[0] > arr[1]) { first = arr[0]; second = arr[1]; } else { first = arr[1]; second = arr[0]; } // Traverse remaining array and find first and second // largest elements in overall array for ( int i = 2; i < n; i++) { /* If current element is greater than first then update both first and second */ if (arr[i] > first) { second = first; first = arr[i]; } /* If arr[i] is in between first and second then * update second */ else if (arr[i] > second && arr[i] != first) second = arr[i]; } return (first + second); } /* Driver program to test above function */ int main() { int arr[] = { 12, 34, 10, 6, 40 }; int n = sizeof (arr) / sizeof (arr[0]); cout << "Max Pair Sum is " << findLargestSumPair(arr, n); return 0; } |
Java
public class LargestPairSum { public static void main(String[] args) { // TODO Auto-generated method stub int arr[] = { 12 , 34 , 10 , 6 , 40 }; System.out.println(largestPairSum(arr, arr.length)); } private static int largestPairSum( int [] arr, int n) { int j = 0 ; int max = n == 1 ? arr[ 0 ] + arr[ 1 ] : arr[ 0 ]; for ( int i = 0 ; i < n; i++) { int sum = arr[j] + arr[i]; if (sum > max) { max = sum; if (arr[j] < arr[i]) { j = i; } } } return max; } } /** * This code is contributed by Tanveer Baba */ |
Python3
# Python3 program to find largest # pair sum in a given array # Function to return largest pair # sum. Assumes that there are # at-least two elements in arr[] def findLargestSumPair(arr, n): # Initialize first and second # largest element if arr[ 0 ] > arr[ 1 ]: first = arr[ 0 ] second = arr[ 1 ] else : first = arr[ 1 ] second = arr[ 0 ] # Traverse remaining array and # find first and second largest # elements in overall array for i in range ( 2 , n): # If current element is greater # than first then update both # first and second if arr[i] > first: second = first first = arr[i] # If arr[i] is in between first # and second then update second elif arr[i] > second and arr[i] ! = first: second = arr[i] return (first + second) # Driver program to test above function */ arr = [ 12 , 34 , 10 , 6 , 40 ] n = len (arr) print ( "Max Pair Sum is" , findLargestSumPair(arr, n)) # This code is contributed by Smitha Dinesh Semwal |
C#
// C# program to find largest // pair sum in a given array using System; class GFG { /* Method to return largest pair sum. Assumes that there are at-least two elements in arr[] */ static int findLargestSumPair( int [] arr) { // Initialize first and // second largest element int first, second; if (arr[0] > arr[1]) { first = arr[0]; second = arr[1]; } else { first = arr[1]; second = arr[0]; } // Traverse remaining array and // find first and second largest // elements in overall array for ( int i = 2; i < arr.Length; i++) { /* If current element is greater than first then update both first and second */ if (arr[i] > first) { second = first; first = arr[i]; } /* If arr[i] is in between first and second then update second */ else if (arr[i] > second && arr[i] != first) second = arr[i]; } return (first + second); } // Driver Code public static void Main() { int [] arr1 = new int [] { 12, 34, 10, 6, 40 }; Console.Write( "Max Pair Sum is " + findLargestSumPair(arr1)); } } |
PHP
<?php // PHP program to find largest // pair sum in a given array // Function to return largest // pair sum. Assumes that // there are at-least two // elements in arr[] */ function findLargestSumPair( $arr , $n ) { // Initialize first and // second largest element $first ; $second ; if ( $arr [0] > $arr [1]) { $first = $arr [0]; $second = $arr [1]; } else { $first = $arr [1]; $second = $arr [0]; } // Traverse remaining array // and find first and second // largest elements in overall // array for ( $i = 2; $i < $n ; $i ++) { // If current element is greater // than first then update both // first and second if ( $arr [ $i ] > $first ) { $second = $first ; $first = $arr [ $i ]; } // If arr[i] is in between first // and second then update second else if ( $arr [ $i ] > $second and $arr [ $i ] != $first ) $second = $arr [ $i ]; } return ( $first + $second ); } // Driver Code $arr = array (12, 34, 10, 6, 40); $n = count ( $arr ); echo "Max Pair Sum is " , findLargestSumPair( $arr , $n ); // This code is contributed by anuj_67. ?> |
Javascript
<script> // Javascript program to find largest // pair sum in a given array /* Method to return largest pair sum. Assumes that there are at-least two elements in arr[] */ function findLargestSumPair(arr) { // Initialize first and // second largest element let first, second; if (arr[0] > arr[1]) { first = arr[0]; second = arr[1]; } else { first = arr[1]; second = arr[0]; } // Traverse remaining array and // find first and second largest // elements in overall array for (let i = 2; i < arr.length; i ++) { /* If current element is greater than first then update both first and second */ if (arr[i] > first) { second = first; first = arr[i]; } /* If arr[i] is in between first and second then update second */ else if (arr[i] > second && arr[i] != first) second = arr[i]; } return (first + second); } let arr1 = [12, 34, 10, 6, 40]; document.write( "Max Pair Sum is " + findLargestSumPair(arr1)); // This code is contributed by divyeshrabadiy07. </script> |
Max Pair Sum is 74
The time complexity of the above solution is O(n).
The space complexity of the above solution is O(1).
This article is contributed by Rishabh and improved by Akshita Patel. Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above
Please Login to comment...