Find Sum of all unique sub-array sum for a given array.
Given an array of n-positive elements. The sub-array sum is defined as the sum of all elements of a particular sub-array, the task is to find the sum of all unique sub-array sum.
Note: Unique Sub-array sum means no other sub-array will have the same sum value.
Examples:
Input : arr[] = {3, 4, 5}
Output : 40
Explanation: All possible unique sub-array with their sum are as:
(3), (4), (5), (3+4), (4+5), (3+4+5). Here all are unique so required sum = 40Input : arr[] = {2, 4, 2}
Output : 12
Explanation: All possible unique sub-array with their sum are as:
(2), (4), (2), (2+4), (4+2), (2+4+2). Here only (4) and (2+4+2) are unique.
Method 1 (Sorting Based):
- Calculate the cumulative sum of an array.
- Store all sub-array sum in vector.
- Sort the vector.
- Mark all duplicate sub-array sum to zero
- Calculate and return totalSum.
Implementation:
C++
// C++ for finding sum of all unique // subarray sum #include <bits/stdc++.h> using namespace std; // function for finding grandSum long long int findSubarraySum( int arr[], int n) { int i, j; // calculate cumulative sum of array // cArray[0] will store sum of zero elements long long int cArray[n + 1] = { 0 }; for (i = 0; i < n; i++) cArray[i + 1] = cArray[i] + arr[i]; vector< long long int > subArrSum; // store all subarray sum in vector for (i = 1; i <= n; i++) for (j = i; j <= n; j++) subArrSum.push_back(cArray[j] - cArray[i - 1]); // sort the vector sort(subArrSum.begin(), subArrSum.end()); // mark all duplicate sub-array // sum to zero long long totalSum = 0; for (i = 0; i < subArrSum.size() - 1; i++) { if (subArrSum[i] == subArrSum[i + 1]) { j = i + 1; while (subArrSum[j] == subArrSum[i] && j < subArrSum.size()) { subArrSum[j] = 0; j++; } subArrSum[i] = 0; } } // calculate total sum for (i = 0; i < subArrSum.size(); i++) totalSum += subArrSum[i]; // return totalSum return totalSum; } // Driver Code int main() { int arr[] = { 3, 2, 3, 1, 4 }; int n = sizeof (arr) / sizeof (arr[0]); cout << findSubarraySum(arr, n); return 0; } |
Java
// Java for finding sum of all unique // subarray sum import java.util.*; class GFG{ // Function for finding grandSum static int findSubarraySum( int arr[], int n) { int i, j; // Calculate cumulative sum of array // cArray[0] will store sum of zero elements int cArray[] = new int [n + 1 ]; for (i = 0 ; i < n; i++) cArray[i + 1 ] = cArray[i] + arr[i]; Vector<Integer> subArrSum = new Vector<Integer>(); // Store all subarray sum in vector for (i = 1 ; i <= n; i++) for (j = i; j <= n; j++) subArrSum.add(cArray[j] - cArray[i - 1 ]); // Sort the vector Collections.sort(subArrSum); // Mark all duplicate sub-array // sum to zero int totalSum = 0 ; for (i = 0 ; i < subArrSum.size() - 1 ; i++) { if (subArrSum.get(i) == subArrSum.get(i + 1 )) { j = i + 1 ; while (subArrSum.get(j) == subArrSum.get(i) && j < subArrSum.size()) { subArrSum.set(j, 0 ); j++; } subArrSum.set(i, 0 ); } } // Calculate total sum for (i = 0 ; i < subArrSum.size(); i++) totalSum += subArrSum.get(i); // Return totalSum return totalSum; } // Driver Code public static void main(String[] args) { int arr[] = { 3 , 2 , 3 , 1 , 4 }; int n = arr.length; System.out.print(findSubarraySum(arr, n)); } } // This code is contributed by Amit Katiyar |
Python3
# Python3 for finding sum of all # unique subarray sum # function for finding grandSum def findSubarraySum(arr, n): # calculate cumulative sum of array # cArray[0] will store sum of zero elements cArray = [ 0 for i in range (n + 1 )] for i in range ( 0 , n, 1 ): cArray[i + 1 ] = cArray[i] + arr[i] subArrSum = [] # store all subarray sum in vector for i in range ( 1 , n + 1 , 1 ): for j in range (i, n + 1 , 1 ): subArrSum.append(cArray[j] - cArray[i - 1 ]) # sort the vector subArrSum.sort(reverse = False ) # mark all duplicate sub-array # sum to zero totalSum = 0 for i in range ( 0 , len (subArrSum) - 1 , 1 ): if (subArrSum[i] = = subArrSum[i + 1 ]): j = i + 1 while (subArrSum[j] = = subArrSum[i] and j < len (subArrSum)): subArrSum[j] = 0 j + = 1 subArrSum[i] = 0 # calculate total sum for i in range ( 0 , len (subArrSum), 1 ): totalSum + = subArrSum[i] # return totalSum return totalSum # Drivers code if __name__ = = '__main__' : arr = [ 3 , 2 , 3 , 1 , 4 ] n = len (arr) print (findSubarraySum(arr, n)) # This code is contributed by # Sahil_Shelangia |
C#
// C# for finding sum of all unique // subarray sum using System; using System.Collections.Generic; class GFG{ // Function for finding grandSum static int findSubarraySum( int []arr, int n) { int i, j; // Calculate cumulative sum // of array cArray[0] will // store sum of zero elements int []cArray = new int [n + 1]; for (i = 0; i < n; i++) cArray[i + 1] = cArray[i] + arr[i]; List< int > subArrSum = new List< int >(); // Store all subarray sum in vector for (i = 1; i <= n; i++) for (j = i; j <= n; j++) subArrSum.Add(cArray[j] - cArray[i - 1]); // Sort the vector subArrSum.Sort(); // Mark all duplicate // sub-array sum to zero int totalSum = 0; for (i = 0; i < subArrSum.Count - 1; i++) { if (subArrSum[i] == subArrSum[i + 1]) { j = i + 1; while (subArrSum[j] == subArrSum[i] && j < subArrSum.Count) { subArrSum[j] = 0; j++; } subArrSum[i] = 0; } } // Calculate total sum for (i = 0; i < subArrSum.Count; i++) totalSum += subArrSum[i]; // Return totalSum return totalSum; } // Driver Code public static void Main(String[] args) { int []arr = {3, 2, 3, 1, 4}; int n = arr.Length; Console.Write(findSubarraySum(arr, n)); } } // This code is contributed by Rajput-Ji |
Javascript
<script> // JavaScript for finding sum of all unique // subarray sum // Function for finding grandSum function findSubarraySum(arr, n) { var i, j; // Calculate cumulative sum // of array cArray[0] will // store sum of zero elements var cArray = new Array(n + 1).fill(0); for (i = 0; i < n; i++) cArray[i + 1] = cArray[i] + arr[i]; var subArrSum = []; // Store all subarray sum in vector for (i = 1; i <= n; i++) for (j = i; j <= n; j++) subArrSum.push(cArray[j] - cArray[i - 1]); // Sort the vector subArrSum.sort(); // Mark all duplicate // sub-array sum to zero var totalSum = 0; for (i = 0; i < subArrSum.length - 1; i++) { if (subArrSum[i] == subArrSum[i + 1]) { j = i + 1; while (subArrSum[j] == subArrSum[i] && j < subArrSum.length) { subArrSum[j] = 0; j++; } subArrSum[i] = 0; } } // Calculate total sum for (i = 0; i < subArrSum.length; i++) totalSum += subArrSum[i]; // Return totalSum return totalSum; } // Driver Code var arr = [3, 2, 3, 1, 4]; var n = arr.length; document.write(findSubarraySum(arr, n)); // This code is contributed by rdtank. </script> |
41
Complexity Analysis:
- Time Complexity: O(N^2 + N * logN)
- Auxiliary Space: O(N)
Method 2 (Hashing Based):
The idea is to make an empty hash table. We generate all subarrays. For every subarray, we compute its sum and increment count of the sum in the hash table. Finally, we add all those sums whose count is 1.
Implementation:
C++
// C++ for finding sum of all unique subarray sum #include <bits/stdc++.h> using namespace std; // function for finding grandSum long long int findSubarraySum( int arr[], int n) { int res = 0; // Go through all subarrays, compute sums // and count occurrences of sums. unordered_map< int , int > m; for ( int i = 0; i < n; i++) { int sum = 0; for ( int j = i; j < n; j++) { sum += arr[j]; m[sum]++; } } // Print all those sums that appear // once. for ( auto x : m) if (x.second == 1) res += x.first; return res; } // Driver code int main() { int arr[] = { 3, 2, 3, 1, 4 }; int n = sizeof (arr) / sizeof (arr[0]); cout << findSubarraySum(arr, n); return 0; } |
Java
// Java for finding sum of all // unique subarray sum import java.util.*; class GFG { // function for finding grandSum static int findSubarraySum( int []arr, int n) { int res = 0 ; // Go through all subarrays, compute sums // and count occurrences of sums. HashMap<Integer, Integer> m = new HashMap<Integer, Integer>(); for ( int i = 0 ; i < n; i++) { int sum = 0 ; for ( int j = i; j < n; j++) { sum += arr[j]; if (m.containsKey(sum)) { m.put(sum, m.get(sum) + 1 ); } else { m.put(sum, 1 ); } } } // Print all those sums that appear // once. for (Map.Entry<Integer, Integer> x : m.entrySet()) if (x.getValue() == 1 ) res += x.getKey(); return res; } // Driver code public static void main(String[] args) { int arr[] = { 3 , 2 , 3 , 1 , 4 }; int n = arr.length; System.out.println(findSubarraySum(arr, n)); } } // This code is contributed by PrinciRaj1992 |
Python3
# Python3 for finding sum of all # unique subarray sum # function for finding grandSum def findSubarraySum(arr, n): res = 0 # Go through all subarrays, compute sums # and count occurrences of sums. m = dict () for i in range (n): Sum = 0 for j in range (i, n): Sum + = arr[j] m[ Sum ] = m.get( Sum , 0 ) + 1 # Print all those Sums that appear # once. for x in m: if m[x] = = 1 : res + = x return res # Driver code arr = [ 3 , 2 , 3 , 1 , 4 ] n = len (arr) print (findSubarraySum(arr, n)) # This code is contributed by mohit kumar |
C#
// C# for finding sum of all // unique subarray sum using System; using System.Collections.Generic; class GFG { // function for finding grandSum static int findSubarraySum( int []arr, int n) { int res = 0; // Go through all subarrays, compute sums // and count occurrences of sums. Dictionary< int , int > m = new Dictionary< int , int >(); for ( int i = 0; i < n; i++) { int sum = 0; for ( int j = i; j < n; j++) { sum += arr[j]; if (m.ContainsKey(sum)) { m[sum] = m[sum] + 1; } else { m.Add(sum, 1); } } } // Print all those sums that appear // once. foreach (KeyValuePair< int , int > x in m) if (x.Value == 1) res += x.Key; return res; } // Driver code public static void Main(String[] args) { int []arr = { 3, 2, 3, 1, 4 }; int n = arr.Length; Console.WriteLine(findSubarraySum(arr, n)); } } // This code is contributed by Rajput-Ji |
Javascript
<script> // Javascript for finding sum of all // unique subarray sum // Function for finding grandSum function findSubarraySum(arr, n) { let res = 0; // Go through all subarrays, compute sums // and count occurrences of sums. let m = new Map(); for (let i = 0; i < n; i++) { let sum = 0; for (let j = i; j < n; j++) { sum += arr[j]; if (m.has(sum)) { m.set(sum, m.get(sum) + 1); } else { m.set(sum, 1); } } } // Print all those sums that appear // once. for (let x of m) if (x[1] == 1) res += x[0]; return res; } // Driver code let arr = [ 3, 2, 3, 1, 4 ]; let n = arr.length; document.write(findSubarraySum(arr, n)); // This code is contributed by gfgking </script> |
41
Complexity Analysis:
- Time Complexity: O(N^2)
- Auxiliary Space: O(N)
Please Login to comment...