Find Sum of Series 1^2 – 2^2 + 3^2 – 4^2 ….. upto n terms
Given a number n, the task is to find the sum of the below series upto n terms:
12 – 22 + 32 – 42 + …..
Examples:
Input: n = 2 Output: -3 Explanation: sum = 12 - 22 = 1 - 4 = -3 Input: n = 3 Output: 6 Explanation: sum = 12 - 22 + 32 = 1 - 4 + 9 = 6
Naive Approach:
This method involves simply running a loop of i from 1 to n and if i is odd then simply add its square to the result it i is even then simply subtract square of it to the result.
Below is the implementation of the above approach:
C++
// C++ program to find sum of series // 1^2 - 2^2 + 3^3 - 4^4 + ... #include <bits/stdc++.h> using namespace std; // Function to find sum of series int sum_of_series( int n) { int result = 0; for ( int i = 1; i <= n; i++) { // If i is even if (i % 2 == 0) result = result - pow (i, 2); // If i is odd else result = result + pow (i, 2); } // return the result return result; } // Driver Code int main( void ) { // Get n int n = 3; // Find the sum cout << sum_of_series(n) << endl; // Get n n = 10; // Find the sum cout << sum_of_series(n) << endl; } |
Java
// Java Program to find sum of series // 1^2 - 2^2 + 3^3 - 4^4 + ... import java.util.*; import java.lang.*; class GFG { // Function to find sum of series static int sum_of_series( int n) { int result = 0 ; for ( int i = 1 ; i <= n; i++) { // If i is even if (i % 2 == 0 ) result = result - ( int )Math.pow(i, 2 ); // If i is odd else result = result + ( int )Math.pow(i, 2 ); } // return the result return result; } // Driver Code public static void main(String args[]) { // Get n int n = 3 ; // Find the sum System.out.println(sum_of_series(n)); // Get n n = 10 ; // Find the sum System.out.println(sum_of_series(n)); } } // This code is contributed // by Akanksha Rai(Abby_akku) |
Python3
# Python3 program to find sum of series # 1^2 - 2^2 + 3^3 - 4^4 + ... # Function to find sum of series def sum_of_series(n): result = 0 for i in range ( 1 , n + 1 ) : # If i is even if (i % 2 = = 0 ): result = result - pow (i, 2 ) # If i is odd else : result = result + pow (i, 2 ) # return the result return result # Driver Code if __name__ = = "__main__" : # Get n n = 3 # Find the sum print (sum_of_series(n)) # Get n n = 10 # Find the sum print (sum_of_series(n)) # This code is contributed # by ChitraNayal |
C#
// C# Program to find sum of series // 1^2 - 2^2 + 3^3 - 4^4 + ... using System; class GFG { // Function to find sum of series static int sum_of_series( int n) { int result = 0; for ( int i = 1; i <= n; i++) { // If i is even if (i % 2 == 0) result = result - ( int )Math.Pow(i, 2); // If i is odd else result = result + ( int )Math.Pow(i, 2); } // return the result return result; } // Driver Code public static void Main() { // Get n int n = 3; // Find the sum Console.WriteLine(sum_of_series(n)); // Get n n = 10; // Find the sum Console.WriteLine(sum_of_series(n)); } } // This code is contributed // by Akanksha Rai(Abby_akku) |
PHP
<?php // PHP program to find sum of series // 1^2 - 2^2 + 3^3 - 4^4 + ... // Function to find sum of series function sum_of_series( $n ) { $result = 0; for ( $i = 1; $i <= $n ; $i ++) { // If i is even if ( $i % 2 == 0) $result = $result - pow( $i , 2); // If i is odd else $result = $result + pow( $i , 2); } // return the result return $result ; } // Driver Code // Get n $n = 3; // Find the sum echo sum_of_series( $n ), "\n" ; // Get n $n = 10; // Find the sum echo sum_of_series( $n ), "\n" ; // This Code is Contributed by anuj_67 ?> |
Javascript
<script> // javascript Program to find sum of series // 1^2 - 2^2 + 3^3 - 4^4 + ... // Function to find sum of series function sum_of_series(n) { var result = 0; for (i = 1; i <= n; i++) { // If i is even if (i % 2 == 0) result = result - parseInt(Math.pow(i, 2)); // If i is odd else result = result + parseInt(Math.pow(i, 2)); } // return the result return result; } // Driver Code // Get n var n = 3; // Find the sum document.write(sum_of_series(n)+ "<br>" ); // Get n n = 10; // Find the sum document.write(sum_of_series(n)); // This code is contributed by 29AjayKumar </script> |
Output:
6 -55
Time Complexity: O(n)
Auxiliary Space: O(1)
Efficient Approach
It is based on condition of n
If n is even:
If n is odd:
Below is the implementation of the above approach:
C++
// C++ Program to find sum of series // 1^2 - 2^2 +3^3 -4^4 + ... #include <bits/stdc++.h> using namespace std; // Function to find sum of series int sum_of_series( int n) { int result = 0; // If n is even if (n % 2 == 0) { result = -(n * (n + 1)) / 2; } // If n is odd else { result = (n * (n + 1)) / 2; } // return the result return result; } // Driver Code int main( void ) { // Get n int n = 3; // Find the sum cout << sum_of_series(n) << endl; // Get n n = 10; // Find the sum cout << sum_of_series(n) << endl; } |
Java
// Java Program to find sum of series // 1^2 - 2^2 +3^3 -4^4 + ... import java.util.*; import java.lang.*; class GFG { // Function to find sum of series static int sum_of_series( int n) { int result = 0 ; // If n is even if (n % 2 == 0 ) { result = -(n * (n + 1 )) / 2 ; } // If n is odd else { result = (n * (n + 1 )) / 2 ; } // return the result return result; } // Driver Code public static void main(String args[]) { // Get n int n = 3 ; // Find the sum System.out.println(sum_of_series(n)); // Get n n = 10 ; // Find the sum System.out.println(sum_of_series(n)); } } // This code is contributed // by Akanksha Rai(Abby_akku) |
Python3
# Python3 Program to find sum of series # 1^2 - 2^2 +3^3 -4^4 + ... # Function to find sum of series def sum_of_series(n) : result = 0 # If n is even if (n % 2 = = 0 ) : result = - (n * (n + 1 )) / / 2 # If n is odd else : result = (n * (n + 1 )) / / 2 # return the result return result # Driver Code if __name__ = = "__main__" : # Get n n = 3 # Find the sum print (sum_of_series(n)) # Get n n = 10 # Find the sum print (sum_of_series(n)) # This code is contributed by Ryuga |
C#
// C# Program to find sum of series // 1^2 - 2^2 +3^3 -4^4 + ... using System; class GFG { // Function to find sum of series static int sum_of_series( int n) { int result = 0; // If n is even if (n % 2 == 0) { result = -(n * (n + 1)) / 2; } // If n is odd else { result = (n * (n + 1)) / 2; } // return the result return result; } // Driver Code public static void Main() { // Get n int n = 3; // Find the sum Console.WriteLine(sum_of_series(n)); // Get n n = 10; // Find the sum Console.WriteLine(sum_of_series(n)); } } // This code is contributed // by Akanksha Rai(Abby_akku) |
PHP
<?php // PHP program to find sum of series // 1^2 - 2^2 +3^3 -4^4 + ... // Function to find sum of series function sum_of_series( $n ) { $result = 0; // If n is even if ( $n % 2 == 0) { $result = -( $n * ( $n + 1)) / 2; } // If n is odd else { $result = ( $n * ( $n + 1)) / 2; } // return the result return $result ; } // Driver Code // Get n $n = 3; // Find the sum echo sum_of_series( $n ); echo ( "\n" ); // Get n $n = 10; // Find the sum echo sum_of_series( $n ); echo ( "\n" ); // Get n $n = 10; // This code is contributed // by Shivi_Aggarwal ?> |
Javascript
<script> // Javascript Program to find sum of series // 1^2 - 2^2 +3^3 -4^4 + ... // Function to find sum of series function sum_of_series( n) { let result = 0; // If n is even if (n % 2 == 0) { result = -(n * (n + 1)) / 2; } // If n is odd else { result = (n * (n + 1)) / 2; } // return the result return result; } // Driver Code // Get n let n = 3; // Find the sum document.write(sum_of_series(n)+ "<br/>" ); // Get n n = 10; // Find the sum document.write(sum_of_series(n)); // This code is contributed by 29AjayKumar </script> |
Output:
6 -55
Time Complexity: O(1), the code will run in a constant time.
Auxiliary Space: O(1), no extra space is required, so it is a constant.
Please Login to comment...