Find sum of Kth largest Euclidean distance after removing ith coordinate one at a time
Given N integer coordinates where X[i] denotes the x-coordinate and Y[i] denotes the y-coordinate of the ith coordinate, the task is to find the sum of Kth largest euclidean distance between all the coordinate pairs except the ith coordinate for all possible values of i in the range [1, N].
Examples:
Input: X[] = {0, 0, 1, 1}, Y[] = {0, 1, 0, 1}, K = 2
Output: 4
Explanation:
- The coordinates except the 1st coordinate are {{0, 1}, {1, 0}, {1, 1}}. Their respective euclidean distances are {1.414, 1, 1}. Since K = 2, the second largest euclidean distance = 1.
- The coordinates except the 2nd coordinate are {{0, 0}, {1, 0}, {1, 1}}. Their respective euclidean distances are {1, 1, 1.414}. The second largest euclidean distance = 1.
- The coordinates except the 3rd coordinate are {{0, 1}, {0, 0}, {1, 1}}. Their respective euclidean distances are {1, 1.414, 1}. The second largest euclidean distance = 1.
- The coordinates except the 4th coordinate are {{0, 1}, {1, 0}, {0, 0}}. Their respective euclidean distances are {1.414, 1, 1}. The second largest euclidean distance = 1.
The sum of all second largest euclidean distances is 4.
Input: X[] = {0, 1, 1}, Y[] = {0, 0, 1}, K = 1
Output: 3.41421
Approach: The given problem can be solved by following the below steps:
- Create a vector distances[] which store index p, q, and the euclidean distance between the pth and qth coordinate for all valid unordered pairs of (p, q) in the range [1, N].
- Sort the vector distances in the order of decreasing distances.
- For all values of i in the range [1, N], perform the following operation:
- Create a variable cnt, which keeps track of the index of Kth largest element in distances vector. Initially, cnt = 0.
- Iterate through the vector distances using a variable j, and increment the value of cnt by 1 if i != p and i != q where (p, q) are the indices of coordinates stored in distances[j].
- If cnt = K, add the distance at current index j in distances vector into a variable ans.
- The value stored in ans is the required answer.
Below is the implementation of the above approach:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Function to find the sum of the Kth // maximum distance after excluding the // ith coordinate for all i over the // range [1, N] double sumMaxDistances( int X[], int Y[], int N, int K) { // Stores (p, q) and the square of // distance between pth and qth // coordinate vector<pair< int , pair< int , int > > > distances; // Find the euclidean distances // between all pairs of coordinates for ( int i = 0; i < N; i++) { for ( int j = i + 1; j < N; j++) { // Stores the square of euclidean // distance between the ith and // the jth coordinate int d = (X[i] - X[j]) * (X[i] - X[j]) + (Y[i] - Y[j]) * (Y[i] - Y[j]); // Insert into distances distances.push_back({ d, { i, j } }); } } // Stores the final answer double ans = 0; // Sort the distances vector in the // decreasing order of distance sort(distances.begin(), distances.end(), greater<pair< int , pair< int , int > > >()); // Iterate over all i in range [1, N] for ( int i = 0; i < N; i++) { // Stores the square of Kth maximum // distance int mx = -1; // Stores the index of Kth maximum // distance int cnt = 0; // Loop to iterate over distances for ( int j = 0; j < distances.size(); j++) { // Check if any of (p, q) in // distances[j] is equal to i if (distances[j].second.first != i && distances[j].second.second != i) { cnt++; } // If the current index is the // Kth largest distance if (cnt == K) { mx = distances[j].first; break ; } } // If Kth largest distance exists // then add it into ans if (mx != -1) { // Add square root of mx as mx // stores the square of distance ans += sqrt (mx); } } // Return the result return ans; } // Driver Code int main() { int X[] = { 0, 1, 1 }; int Y[] = { 0, 0, 1 }; int K = 1; int N = sizeof (X) / sizeof (X[0]); cout << sumMaxDistances(X, Y, N, K); return 0; } |
Java
// Java code for the above approach import java.io.*; import java.util.*; import java.util.Collections; // User defined Pair class class Pair { int first; int second; // Constructor public Pair( int first, int second) { this .first = first; this .second = second; } } // User defined Pair with one element int and other as a // pair class Pair_next { int first; Pair second; // constructor public Pair_next( int first, Pair second) { this .first = first; this .second = second; } } // class to sort the elements in // decreasing order of first element class cmp implements Comparator<Pair_next> { public int compare(Pair_next p1, Pair_next p2) { return p2.first - p1.first; } } public class GFG { // Function to find the sum of the Kth // maximum distance after excluding the // ith coordinate for all i over the // range [1, N] static double sumMaxDistances( int X[], int Y[], int N, int K) { // Stores (p, q) and the square of // distance between pth and qth // coordinate Vector<Pair_next> distances = new Vector<Pair_next>(); // Find the euclidean distances // between all pairs of coordinates for ( int i = 0 ; i < N; i++) { for ( int j = i + 1 ; j < N; j++) { // Stores the square of euclidean // distance between the ith and // the jth coordinate int d = (X[i] - X[j]) * (X[i] - X[j]) + (Y[i] - Y[j]) * (Y[i] - Y[j]); // Insert into distances Pair temp_pair = new Pair(i, j); Pair_next temp = new Pair_next(d, temp_pair); distances.add(temp); } } // Stores the final answer double ans = 0 ; // Sort the distances vector in the // decreasing order of distance Collections.sort(distances, new cmp()); // Iterate over all i in range [1, N] for ( int i = 0 ; i < N; i++) { // Stores the square of Kth maximum // distance int mx = - 1 ; // Stores the index of Kth maximum // distance int cnt = 0 ; // Loop to iterate over distances for ( int j = 0 ; j < distances.size(); j++) { // Check if any of (p, q) in // distances[j] is equal to i if (distances.get(j).second.first != i && distances.get(j).second.second != i) { cnt++; } // If the current index is the // Kth largest distance if (cnt == K) { mx = distances.get(j).first; break ; } } // If Kth largest distance exists // then add it into ans if (mx != - 1 ) { // Add square root of mx as mx // stores the square of distance ans += Math.sqrt(mx); } } // Return the result return ans; } // Driver Code public static void main(String[] args) { int X[] = { 0 , 1 , 1 }; int Y[] = { 0 , 0 , 1 }; int K = 1 ; int N = X.length; System.out.println(sumMaxDistances(X, Y, N, K)); } } // This code is contributed by rj13to. |
Python3
# Python 3 program for the above approach from math import sqrt # Function to find the sum of the Kth # maximum distance after excluding the # ith coordinate for all i over the # range [1, N] def sumMaxDistances(X, Y, N, K): # Stores (p, q) and the square of # distance between pth and qth # coordinate distances = [] # Find the euclidean distances # between all pairs of coordinates for i in range (N): for j in range (i + 1 , N, 1 ): # Stores the square of euclidean # distance between the ith and # the jth coordinate d = int (X[i] - X[j]) * int (X[i] - X[j]) + int (Y[i] - Y[j]) * int (Y[i] - Y[j]) # Insert into distances distances.append([d,[i, j]]) # Stores the final answer ans = 0 # Sort the distances vector in the # decreasing order of distance distances.sort(reverse = True ) # Iterate over all i in range [1, N] for i in range (N): # Stores the square of Kth maximum # distance mx = - 1 # Stores the index of Kth maximum # distance cnt = 0 # Loop to iterate over distances for j in range ( 0 , len (distances), 1 ): # Check if any of (p, q) in # distances[j] is equal to i if (distances[j][ 1 ][ 0 ] ! = i and distances[j][ 1 ][ 0 ] ! = i): cnt + = 1 # If the current index is the # Kth largest distance if (cnt = = K): mx = distances[j][ 0 ] break # If Kth largest distance exists # then add it into ans if (mx ! = - 1 ): # Add square root of mx as mx # stores the square of distance ans + = (sqrt(mx)) # Return the result return ans # Driver Code if __name__ = = '__main__' : X = [ 0 , 1 , 1 ] Y = [ 0 , 0 , 1 ] K = 1 N = len (X) print (sumMaxDistances(X, Y, N, K)) # This code is contributed by ipg2016107. |
C#
// C# code for the above approach using System; using System.Collections.Generic; // User defined Pair class class Pair { public int first; public int second; // Constructor public Pair( int first, int second) { this .first = first; this .second = second; } } // User defined Pair with one element int and other as a // pair class Pair_next { public int first; public Pair second; // constructor public Pair_next( int first, Pair second) { this .first = first; this .second = second; } } // class to sort the elements in // decreasing order of first element class cmp : IComparer<Pair_next> { public int Compare(Pair_next p1, Pair_next p2) { return p2.first - p1.first; } } class GFG { // Function to find the sum of the Kth // maximum distance after excluding the // ith coordinate for all i over the // range [1, N] static double sumMaxDistances( int [] X, int [] Y, int N, int K) { // Stores (p, q) and the square of // distance between pth and qth // coordinate List<Pair_next> distances = new List<Pair_next>(); // Find the euclidean distances // between all pairs of coordinates for ( int i = 0; i < N; i++) { for ( int j = i + 1; j < N; j++) { // Stores the square of euclidean // distance between the ith and // the jth coordinate int d = (X[i] - X[j]) * (X[i] - X[j]) + (Y[i] - Y[j]) * (Y[i] - Y[j]); // Insert into distances Pair temp_pair = new Pair(i, j); Pair_next temp = new Pair_next(d, temp_pair); distances.Add(temp); } } // Stores the final answer double ans = 0; // Sort the distances vector in the // decreasing order of distance distances.Sort( new cmp()); // Iterate over all i in range [1, N] for ( int i = 0; i < N; i++) { // Stores the square of Kth maximum // distance int mx = -1; // Stores the index of Kth maximum // distance int cnt = 0; // Loop to iterate over distances for ( int j = 0; j < distances.Count; j++) { // Check if any of (p, q) in // distances[j] is equal to i if (distances[j].second.first != i && distances[j].second.second != i) { cnt++; } // If the current index is the // Kth largest distance if (cnt == K) { mx = distances[j].first; break ; } } // If Kth largest distance exists // then add it into ans if (mx != -1) { // Add square root of mx as mx // stores the square of distance ans += Math.Sqrt(mx); } } // Return the result return ans; } // Driver Code public static void Main( string [] args) { int [] X = { 0, 1, 1 }; int [] Y = { 0, 0, 1 }; int K = 1; int N = X.Length; Console.WriteLine(sumMaxDistances(X, Y, N, K)); } } // This code is contributed by phasing17. |
Javascript
// JS code to implement the approach // Function to find the sum of the Kth // maximum distance after excluding the // ith coordinate for all i over the // range [1, N] function sumMaxDistances(X, Y, N, K) { // Stores (p, q) and the square of // distance between pth and qth // coordinate let distances = []; // Find the euclidean distances // between all pairs of coordinates for (let i = 0; i < N; i++) { for (let j = i + 1; j < N; j++) { // Stores the square of euclidean // distance between the ith and // the jth coordinate let d = (X[i] - X[j]) * (X[i] - X[j]) + (Y[i] - Y[j]) * (Y[i] - Y[j]); // Insert into distances distances.push([d, [i, j]]); } } // Stores the final answer let ans = 0; // Sort the distances vector in the // decreasing order of distance distances.sort((a, b) => b[0] - a[0]); // Iterate over all i in range [1, N] for (let i = 0; i < N; i++) { // Stores the square of Kth maximum // distance let mx = -1; // Stores the index of Kth maximum // distance let cnt = 0; // Loop to iterate over distances for (let j = 0; j < distances.length; j++) { // Check if any of (p, q) in // distances[j] is equal to i if (distances[j][1][0] != i && distances[j][1][0] != i) { cnt++; } // If the current index is the // Kth largest distance if (cnt == K) { mx = distances[j][0]; break ; } } // If Kth largest distance exists // then add it into ans if (mx !== -1) { // Add square root of mx as mx // stores the square of distance ans += Math.sqrt(mx); } } // Return the result return ans; } // Driver Code console.log(sumMaxDistances([0, 1, 1], [0, 0, 1], 3, 1)); // This code is contributed by phasing17 |
Output:
3.41421
Time Complexity: O(N2*log N + K*N2)
Auxiliary Space: O(N2)
Please Login to comment...