Find sum of modulo K of first N natural number
Given two integer N ans K, the task is to find sum of modulo K of first N natural numbers i.e 1%K + 2%K + ….. + N%K.
Examples :
Input : N = 10 and K = 2. Output : 5 Sum = 1%2 + 2%2 + 3%2 + 4%2 + 5%2 + 6%2 + 7%2 + 8%2 + 9%2 + 10%2 = 1 + 0 + 1 + 0 + 1 + 0 + 1 + 0 + 1 + 0 = 5.
Method 1:
Iterate a variable i from 1 to N, evaluate and add i%K.
Below is the implementation of this approach:
C++
// C++ program to find sum of // modulo K of first N natural numbers. #include <bits/stdc++.h> using namespace std; // Return sum of modulo K of // first N natural numbers. int findSum( int N, int K) { int ans = 0; // Iterate from 1 to N && // evaluating and adding i % K. for ( int i = 1; i <= N; i++) ans += (i % K); return ans; } // Driver Program int main() { int N = 10, K = 2; cout << findSum(N, K) << endl; return 0; } |
Java
// Java program to find sum of modulo // K of first N natural numbers. import java.io.*; class GFG { // Return sum of modulo K of // first N natural numbers. static int findSum( int N, int K) { int ans = 0 ; // Iterate from 1 to N && evaluating // and adding i % K. for ( int i = 1 ; i <= N; i++) ans += (i % K); return ans; } // Driver program static public void main(String[] args) { int N = 10 , K = 2 ; System.out.println(findSum(N, K)); } } // This code is contributed by vt_m. |
Python3
# Python3 program to find sum # of modulo K of first N # natural numbers. # Return sum of modulo K of # first N natural numbers. def findSum(N, K): ans = 0 ; # Iterate from 1 to N && # evaluating and adding i % K. for i in range ( 1 , N + 1 ): ans + = (i % K); return ans; # Driver Code N = 10 ; K = 2 ; print (findSum(N, K)); # This code is contributed by mits |
C#
// C# program to find sum of modulo // K of first N natural numbers. using System; class GFG { // Return sum of modulo K of // first N natural numbers. static int findSum( int N, int K) { int ans = 0; // Iterate from 1 to N && evaluating // and adding i % K. for ( int i = 1; i <= N; i++) ans += (i % K); return ans; } // Driver program static public void Main() { int N = 10, K = 2; Console.WriteLine(findSum(N, K)); } } // This code is contributed by vt_m. |
PHP
<?php // PHP program to find sum // of modulo K of first N // natural numbers. // Return sum of modulo K of // first N natural numbers. function findSum( $N , $K ) { $ans = 0; // Iterate from 1 to N && // evaluating and adding i % K. for ( $i = 1; $i <= $N ; $i ++) $ans += ( $i % $K ); return $ans ; } // Driver Code $N = 10; $K = 2; echo findSum( $N , $K ), "\n" ; // This code is contributed by ajit ?> |
Javascript
<script> // JavaScript program to find sum // of modulo K of first N natural // numbers. // Return sum of modulo K of // first N natural numbers. function findSum(N, K) { let ans = 0; // Iterate from 1 to N && evaluating // and adding i % K. for (let i = 1; i <= N; i++) ans += (i % K); return ans; } // Driver Code let N = 10, K = 2; document.write(findSum(N, K)); // This code is contributed by code_hunt </script> |
Output :
5
Time Complexity : O(N).
Auxiliary Space: O(1)
Method 2 :
Two cases arise in this method.
Case 1: When N < K, for each number i, N >= i >= 1, will give i as result when operate with modulo K. So, the required sum will be the sum of the first N natural number, N*(N+1)/2.
Case 2: When N >= K, then integers from 1 to K in natural number sequence will produce, 1, 2, 3, ….., K – 1, 0 as result when operate with modulo K. Similarly, from K + 1 to 2K, it will produce same result. So, the idea is to count how many numbers of times this sequence appears and multiply it with the sum of first K – 1 natural numbers.
Below is the implementation of this approach:
C++
// C++ program to find sum of modulo // K of first N natural numbers. #include <bits/stdc++.h> using namespace std; // Return sum of modulo K of // first N natural numbers. int findSum( int N, int K) { int ans = 0; // Counting the number of times 1, 2, .., // K-1, 0 sequence occurs. int y = N / K; // Finding the number of elements left which // are incomplete of sequence Leads to Case 1 type. int x = N % K; // adding multiplication of number of // times 1, 2, .., K-1, 0 sequence occurs // and sum of first k natural number and sequence // from case 1. ans = (K * (K - 1) / 2) * y + (x * (x + 1)) / 2; return ans; } // Driver program int main() { int N = 10, K = 2; cout << findSum(N, K) << endl; return 0; } |
Java
// Java program to find sum of modulo // K of first N natural numbers. import java.io.*; class GFG { // Return sum of modulo K of // first N natural numbers. static int findSum( int N, int K) { int ans = 0 ; // Counting the number of times 1, 2, .., // K-1, 0 sequence occurs. int y = N / K; // Finding the number of elements left which // are incomplete of sequence Leads to Case 1 type. int x = N % K; // adding multiplication of number of times // 1, 2, .., K-1, 0 sequence occurs and sum // of first k natural number and sequence // from case 1. ans = (K * (K - 1 ) / 2 ) * y + (x * (x + 1 )) / 2 ; return ans; } // Driver program static public void main(String[] args) { int N = 10 , K = 2 ; System.out.println(findSum(N, K)); } } // This Code is contributed by vt_m. |
Python3
# Python3 program to find sum of modulo # K of first N natural numbers. # Return sum of modulo K of # first N natural numbers. def findSum(N, K): ans = 0 ; # Counting the number of times # 1, 2, .., K-1, 0 sequence occurs. y = N / K; # Finding the number of elements # left which are incomplete of # sequence Leads to Case 1 type. x = N % K; # adding multiplication of number # of times 1, 2, .., K-1, 0 # sequence occurs and sum of # first k natural number and # sequence from case 1. ans = ((K * (K - 1 ) / 2 ) * y + (x * (x + 1 )) / 2 ); return int (ans); # Driver Code N = 10 ; K = 2 ; print (findSum(N, K)); # This code is contributed by mits |
C#
// C# program to find sum of modulo // K of first N natural numbers. using System; class GFG { // Return sum of modulo K of // first N natural numbers. static int findSum( int N, int K) { int ans = 0; // Counting the number of times 1, 2, .., // K-1, 0 sequence occurs. int y = N / K; // Finding the number of elements left which // are incomplete of sequence Leads to Case 1 type. int x = N % K; // adding multiplication of number of times // 1, 2, .., K-1, 0 sequence occurs and sum // of first k natural number and sequence // from case 1. ans = (K * (K - 1) / 2) * y + (x * (x + 1)) / 2; return ans; } // Driver program static public void Main() { int N = 10, K = 2; Console.WriteLine(findSum(N, K)); } } // This code is contributed by vt_m. |
PHP
<?php // PHP program to find sum of modulo // K of first N natural numbers. // Return sum of modulo K of // first N natural numbers. function findSum( $N , $K ) { $ans = 0; // Counting the number of times // 1, 2, .., K-1, 0 sequence occurs. $y = $N / $K ; // Finding the number of elements // left which are incomplete of // sequence Leads to Case 1 type. $x = $N % $K ; // adding multiplication of number // of times 1, 2, .., K-1, 0 // sequence occurs and sum of // first k natural number and // sequence from case 1. $ans = ( $K * ( $K - 1) / 2) * $y + ( $x * ( $x + 1)) / 2; return $ans ; } // Driver program $N = 10; $K = 2; echo findSum( $N , $K ) ; // This code is contributed by anuj_67. ?> |
Javascript
<script> // Javascript program to find sum of modulo // K of first N natural numbers. // Return sum of modulo K of // first N natural numbers. function findSum(N, K) { let ans = 0; // Counting the number of times // 1, 2, .., K-1, 0 sequence occurs. let y = N / K; // Finding the number of elements // left which are incomplete of // sequence Leads to Case 1 type. let x = N % K; // adding multiplication of number // of times 1, 2, .., K-1, 0 // sequence occurs and sum of // first k natural number and // sequence from case 1. ans = (K * (K - 1) / 2) * y + (x * (x + 1)) / 2; return ans; } // Driver code let N = 10; let K = 2; document.write(findSum(N, K)); // This code is contributed by _saurabh_jaiswal </script> |
Output :
5
Time Complexity : O(1).
Auxiliary Space: O(1)
This article is contributed by Anuj Chauhan. If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
Please Login to comment...