Find subarray with given sum | Set 1 (Nonnegative Numbers)
Given an unsorted array arr of nonnegative integers and an integer sum, find a continuous subarray which adds to a given sum. There may be more than one subarrays with sum as the given sum, print first such subarray.
Examples :
Input: arr[] = {1, 4, 20, 3, 10, 5}, sum = 33
Output: Sum found between indexes 2 and 4
Sum of elements between indices 2 and 4 is 20 + 3 + 10 = 33Input: arr[] = {1, 4, 0, 0, 3, 10, 5}, sum = 7
Output: Sum found between indexes 1 and 4
Sum of elements between indices 1 and 4 is 4 + 0 + 0 + 3 = 7Input: arr[] = {1, 4}, sum = 0
Output: No subarray found
There is no subarray with 0 sum
Simple Approach: A simple solution is to consider all subarrays one by one and check the sum of every subarray. Following program implements the simple solution. Run two loops: the outer loop picks a starting point I and the inner loop tries all subarrays starting from i.
Algorithm:
- Traverse the array from start to end.
- From every index start another loop from i to the end of array to get all subarray starting from i, keep a variable sum to calculate the sum.
- For every index in inner loop update sum = sum + array[j]
- If the sum is equal to the given sum then print the subarray.
C++
/* A simple program to print subarray with sum as given sum */ #include <bits/stdc++.h> using namespace std; /* Returns true if the there is a subarray of arr[] with sum equal to 'sum' otherwise returns false. Also, prints the result */ int subArraySum( int arr[], int n, int sum) { int curr_sum, i, j; // Pick a starting point for (i = 0; i < n; i++) { curr_sum = arr[i]; // try all subarrays starting with 'i' for (j = i + 1; j <= n; j++) { if (curr_sum == sum) { cout << "Sum found between indexes " << i << " and " << j - 1; return 1; } if (curr_sum > sum || j == n) break ; curr_sum = curr_sum + arr[j]; } } cout << "No subarray found" ; return 0; } // Driver Code int main() { int arr[] = { 15, 2, 4, 8, 9, 5, 10, 23 }; int n = sizeof (arr) / sizeof (arr[0]); int sum = 23; subArraySum(arr, n, sum); return 0; } // This code is contributed // by rathbhupendra |
C
/* A simple program to print subarray with sum as given sum */ #include <stdio.h> /* Returns true if the there is a subarray of arr[] with a sum equal to 'sum' otherwise returns false. Also, prints the result */ int subArraySum( int arr[], int n, int sum) { int curr_sum, i, j; // Pick a starting point for (i = 0; i < n; i++) { curr_sum = arr[i]; // try all subarrays starting with 'i' for (j = i + 1; j <= n; j++) { if (curr_sum == sum) { printf ( "Sum found between indexes %d and %d" , i, j - 1); return 1; } if (curr_sum > sum || j == n) break ; curr_sum = curr_sum + arr[j]; } } printf ( "No subarray found" ); return 0; } // Driver program to test above function int main() { int arr[] = { 15, 2, 4, 8, 9, 5, 10, 23 }; int n = sizeof (arr) / sizeof (arr[0]); int sum = 23; subArraySum(arr, n, sum); return 0; } |
Java
class SubarraySum { /* Returns true if the there is a subarray of arr[] with a sum equal to 'sum' otherwise returns false. Also, prints the result */ int subArraySum( int arr[], int n, int sum) { int curr_sum, i, j; // Pick a starting point for (i = 0 ; i < n; i++) { curr_sum = arr[i]; // try all subarrays starting with 'i' for (j = i + 1 ; j <= n; j++) { if (curr_sum == sum) { int p = j - 1 ; System.out.println( "Sum found between indexes " + i + " and " + p); return 1 ; } if (curr_sum > sum || j == n) break ; curr_sum = curr_sum + arr[j]; } } System.out.println( "No subarray found" ); return 0 ; } public static void main(String[] args) { SubarraySum arraysum = new SubarraySum(); int arr[] = { 15 , 2 , 4 , 8 , 9 , 5 , 10 , 23 }; int n = arr.length; int sum = 23 ; arraysum.subArraySum(arr, n, sum); } } // This code has been contributed by Mayank Jaiswal(mayank_24) |
Python3
# Returns true if the # there is a subarray # of arr[] with sum # equal to 'sum' # otherwise returns # false. Also, prints # the result def subArraySum(arr, n, sum_): # Pick a starting # point for i in range (n): curr_sum = arr[i] # try all subarrays # starting with 'i' j = i + 1 while j < = n: if curr_sum = = sum_: print ( "Sum found between" ) print ( "indexes % d and % d" % ( i, j - 1 )) return 1 if curr_sum > sum_ or j = = n: break curr_sum = curr_sum + arr[j] j + = 1 print ( "No subarray found" ) return 0 # Driver program arr = [ 15 , 2 , 4 , 8 , 9 , 5 , 10 , 23 ] n = len (arr) sum_ = 23 subArraySum(arr, n, sum_) # This code is Contributed by shreyanshi_arun. |
C#
// C# code to Find subarray // with given sum using System; class GFG { // Returns true if the there is a // subarray of arr[] with sum // equal to 'sum' otherwise returns // false. Also, prints the result int subArraySum( int [] arr, int n, int sum) { int curr_sum, i, j; // Pick a starting point for (i = 0; i < n; i++) { curr_sum = arr[i]; // try all subarrays // starting with 'i' for (j = i + 1; j <= n; j++) { if (curr_sum == sum) { int p = j - 1; Console.Write( "Sum found between " + "indexes " + i + " and " + p); return 1; } if (curr_sum > sum || j == n) break ; curr_sum = curr_sum + arr[j]; } } Console.Write( "No subarray found" ); return 0; } // Driver Code public static void Main() { GFG arraysum = new GFG(); int [] arr = { 15, 2, 4, 8, 9, 5, 10, 23 }; int n = arr.Length; int sum = 23; arraysum.subArraySum(arr, n, sum); } } // This code has been contributed // by nitin mittal |
PHP
<?php // A simple program to print subarray // with sum as given sum /* Returns true if the there is a subarray of arr[] with sum equal to 'sum' otherwise returns false. Also, prints the result */ function subArraySum( $arr , $n , $sum ) { $curr_sum ; $i ; $j ; // Pick a starting point for ( $i = 0; $i < $n ; $i ++) { $curr_sum = $arr [ $i ]; // try all subarrays // starting with 'i' for ( $j = $i + 1; $j <= $n ; $j ++) { if ( $curr_sum == $sum ) { echo "Sum found between indexes " , $i , " and " , $j -1 ; return 1; } if ( $curr_sum > $sum || $j == $n ) break ; $curr_sum = $curr_sum + $arr [ $j ]; } } echo "No subarray found" ; return 0; } // Driver Code $arr = array (15, 2, 4, 8, 9, 5, 10, 23); $n = sizeof( $arr ); $sum = 23; subArraySum( $arr , $n , $sum ); return 0; // This code is contributed by AJit ?> |
Javascript
<script> /* A simple program to print subarray with sum as given sum */ /* Returns true if the there is a subarray of arr[] with sum equal to 'sum' otherwise returns false. Also, prints the result */ function subArraySum(arr, n, sum) { let curr_sum=0; // Pick a starting point for (let i = 0; i < n; i++) { curr_sum = arr[i]; // try all subarrays starting with 'i' for (let j = i + 1; j <= n; j++) { if (curr_sum == sum) { document.write( "Sum found between indexes " +i+ " and " +(j - 1)); return ; } if (curr_sum > sum || j == n) break ; curr_sum = curr_sum + arr[j]; } } document.write( "No subarray found" ); return ; } // Driver Code let arr= [15, 2, 4, 8, 9, 5, 10, 23]; let n = arr.length; let sum = 23; subArraySum(arr, n, sum); </script> |
Sum found between indexes 1 and 4
Complexity Analysis:
- Time Complexity: O(n^2) in worst case.
Nested loop is used to traverse the array so the time complexity is O(n^2) - Space Complexity: O(1).
As constant extra space is required.
Efficient Approach: There is an idea if all the elements of the array are positive. If a subarray has sum greater than the given sum then there is no possibility that adding elements to the current subarray the sum will be x (given sum). Idea is to use a similar approach to a sliding window. Start with an empty subarray, add elements to the subarray until the sum is less than x. If the sum is greater than x, remove elements from the start of the current subarray.
Algorithm:
- Create two variables, l=0, sum = 0
- Traverse the array from start to end.
- Update the variable sum by adding current element, sum = sum + array[i]
- If the sum is greater than the given sum, update the variable sum as sum = sum – array[l], and update l as, l++.
- If the sum is equal to given sum, print the subarray and break the loop.
C++
/* An efficient program to print subarray with sum as given sum */ #include <iostream> using namespace std; /* Returns true if the there is a subarray of arr[] with a sum equal to 'sum' otherwise returns false. Also, prints the result */ int subArraySum( int arr[], int n, int sum) { /* Initialize curr_sum as value of first element and starting point as 0 */ int curr_sum = arr[0], start = 0, i; /* Add elements one by one to curr_sum and if the curr_sum exceeds the sum, then remove starting element */ for (i = 1; i <= n; i++) { // If curr_sum exceeds the sum, // then remove the starting elements while (curr_sum > sum && start < i - 1) { curr_sum = curr_sum - arr[start]; start++; } // If curr_sum becomes equal to sum, // then return true if (curr_sum == sum) { cout << "Sum found between indexes " << start << " and " << i - 1; return 1; } // Add this element to curr_sum if (i < n) curr_sum = curr_sum + arr[i]; } // If we reach here, then no subarray cout << "No subarray found" ; return 0; } // Driver Code int main() { int arr[] = { 15, 2, 4, 8, 9, 5, 10, 23 }; int n = sizeof (arr) / sizeof (arr[0]); int sum = 23; subArraySum(arr, n, sum); return 0; } // This code is contributed by SHUBHAMSINGH10 |
C
/* An efficient program to print subarray with sum as given sum */ #include <stdio.h> /* Returns true if the there is a subarray of arr[] with a sum equal to 'sum' otherwise returns false. Also, prints the result */ int subArraySum( int arr[], int n, int sum) { /* Initialize curr_sum as value of first element and starting point as 0 */ int curr_sum = arr[0], start = 0, i; /* Add elements one by one to curr_sum and if the curr_sum exceeds the sum, then remove starting element */ for (i = 1; i <= n; i++) { // If curr_sum exceeds the sum, // then remove the starting elements while (curr_sum > sum && start < i - 1) { curr_sum = curr_sum - arr[start]; start++; } // If curr_sum becomes equal to sum, // then return true if (curr_sum == sum) { printf ( "Sum found between indexes %d and %d" , start, i - 1); return 1; } // Add this element to curr_sum if (i < n) curr_sum = curr_sum + arr[i]; } // If we reach here, then no subarray printf ( "No subarray found" ); return 0; } // Driver program to test above function int main() { int arr[] = { 15, 2, 4, 8, 9, 5, 10, 23 }; int n = sizeof (arr) / sizeof (arr[0]); int sum = 23; subArraySum(arr, n, sum); return 0; } |
Java
class SubarraySum { /* Returns true if the there is a subarray of arr[] with sum equal to 'sum' otherwise returns false. Also, prints the result */ int subArraySum( int arr[], int n, int sum) { int curr_sum = arr[ 0 ], start = 0 , i; // Pick a starting point for (i = 1 ; i <= n; i++) { // If curr_sum exceeds the sum, // then remove the starting elements while (curr_sum > sum && start < i - 1 ) { curr_sum = curr_sum - arr[start]; start++; } // If curr_sum becomes equal to sum, // then return true if (curr_sum == sum) { int p = i - 1 ; System.out.println( "Sum found between indexes " + start + " and " + p); return 1 ; } // Add this element to curr_sum if (i < n) curr_sum = curr_sum + arr[i]; } System.out.println( "No subarray found" ); return 0 ; } public static void main(String[] args) { SubarraySum arraysum = new SubarraySum(); int arr[] = { 15 , 2 , 4 , 8 , 9 , 5 , 10 , 23 }; int n = arr.length; int sum = 23 ; arraysum.subArraySum(arr, n, sum); } } // This code has been contributed by Mayank Jaiswal(mayank_24) |
Python3
# An efficient program # to print subarray # with sum as given sum # Returns true if the # there is a subarray # of arr[] with sum # equal to 'sum' # otherwise returns # false. Also, prints # the result. def subArraySum(arr, n, sum_): # Initialize curr_sum as # value of first element # and starting point as 0 curr_sum = arr[ 0 ] start = 0 # Add elements one by # one to curr_sum and # if the curr_sum exceeds # the sum, then remove # starting element i = 1 while i < = n: # If curr_sum exceeds # the sum, then remove # the starting elements while curr_sum > sum_ and start < i - 1 : curr_sum = curr_sum - arr[start] start + = 1 # If curr_sum becomes # equal to sum, then # return true if curr_sum = = sum_: print ( "Sum found between indexes" ) print ( "% d and % d" % (start, i - 1 )) return 1 # Add this element # to curr_sum if i < n: curr_sum = curr_sum + arr[i] i + = 1 # If we reach here, # then no subarray print ( "No subarray found" ) return 0 # Driver program arr = [ 15 , 2 , 4 , 8 , 9 , 5 , 10 , 23 ] n = len (arr) sum_ = 23 subArraySum(arr, n, sum_) # This code is Contributed by shreyanshi_arun. |
C#
// An efficient C# program to print // subarray with sum as given sum using System; class GFG { // Returns true if the // there is a subarray of // arr[] with sum equal to // 'sum' otherwise returns false. // Also, prints the result int subArraySum( int [] arr, int n, int sum) { int curr_sum = arr[0], start = 0, i; // Pick a starting point for (i = 1; i <= n; i++) { // If curr_sum exceeds // the sum, then remove // the starting elements while (curr_sum > sum && start < i - 1) { curr_sum = curr_sum - arr[start]; start++; } // If curr_sum becomes equal to // sum, then return true if (curr_sum == sum) { int p = i - 1; Console.WriteLine( "Sum found between " + "indexes " + start + " and " + p); return 1; } // Add this element to curr_sum if (i < n) curr_sum = curr_sum + arr[i]; } Console.WriteLine( "No subarray found" ); return 0; } // Driver code public static void Main() { GFG arraysum = new GFG(); int [] arr = new int [] { 15, 2, 4, 8, 9, 5, 10, 23 }; int n = arr.Length; int sum = 23; arraysum.subArraySum(arr, n, sum); } } // This code has been contributed by KRV. |
PHP
<?php /* An efficient program to print subarray with sum as given sum */ /* Returns true if the there is a subarray of arr[] with sum equal to 'sum' otherwise returns false. Also, prints the result */ function subArraySum( $arr , $n , $sum ) { /* Initialize curr_sum as value of first element and starting point as 0 */ $curr_sum = $arr [0]; $start = 0; $i ; /* Add elements one by one to curr_sum and if the curr_sum exceeds the sum, then remove starting element */ for ( $i = 1; $i <= $n ; $i ++) { // If curr_sum exceeds the sum, // then remove the starting elements while ( $curr_sum > $sum and $start < $i - 1) { $curr_sum = $curr_sum - $arr [ $start ]; $start ++; } // If curr_sum becomes equal // to sum, then return true if ( $curr_sum == $sum ) { echo "Sum found between indexes" , " " , $start , " " , "and " , " " , $i - 1; return 1; } // Add this element // to curr_sum if ( $i < $n ) $curr_sum = $curr_sum + $arr [ $i ]; } // If we reach here, // then no subarray echo "No subarray found" ; return 0; } // Driver Code $arr = array (15, 2, 4, 8, 9, 5, 10, 23); $n = count ( $arr ); $sum = 23; subArraySum( $arr , $n , $sum ); // This code has been // contributed by anuj_67. ?> |
Javascript
<script> /* Returns true if the there is a subarray of arr[] with sum equal to 'sum' otherwise returns false. Also, prints the result */ function subArraySum(arr,n,sum) { let curr_sum = arr[0], start = 0, i; // Pick a starting point for (i = 1; i <= n; i++) { // If curr_sum exceeds the sum, // then remove the starting elements while (curr_sum > sum && start < i - 1) { curr_sum = curr_sum - arr[start]; start++; } // If curr_sum becomes equal to sum, // then return true if (curr_sum == sum) { let p = i - 1; document.write( "Sum found between indexes " + start + " and " + p+ "<br>" ); return 1; } // Add this element to curr_sum if (i < n) curr_sum = curr_sum + arr[i]; } document.write( "No subarray found" ); return 0; } let arr=[15, 2, 4, 8, 9, 5, 10, 23 ]; let n = arr.length; let sum = 23; subArraySum(arr, n, sum); // This code is contributed by unknown2108 </script> |
Sum found between indexes 1 and 4
Complexity Analysis:
- Time Complexity: O(n).
- The Array is traversed only once to insert elements into the window. It will take O(N) time
- The Array is traversed again once to remove elements from the window. It will also take O(N) time.
- So the total time will be O(N) + O(N) = O(2*N), which is similar to O(N)
- Space Complexity: O(1).
As constant extra space is required.
?list=PLqM7alHXFySEQDk2MDfbwEdjd2svVJH9p
The above solution doesn’t handle negative numbers. We can use hashing to handle negative numbers. See below set 2.
- Find subarray with given sum | Set 2 (Handles Negative Numbers)
- Find subarray with given sum with negatives allowed in constant space