Find the smallest number whose digits multiply to a given number n
Given a number ‘n’, find the smallest number ‘p’ such that if we multiply all digits of ‘p’, we get ‘n’. The result ‘p’ should have minimum two digits.
Examples:
Input: n = 36 Output: p = 49 // Note that 4*9 = 36 and 49 is the smallest such number Input: n = 100 Output: p = 455 // Note that 4*5*5 = 100 and 455 is the smallest such number Input: n = 1 Output:p = 11 // Note that 1*1 = 1 Input: n = 13 Output: Not Possible
For a given n, following are the two cases to be considered.
Case 1: n < 10 When n is smaller than 10, the output is always n+10. For example for n = 7, the output is 17. For n = 9, output is 19.
Case 2: n >= 10 Find all factors of n which are between 2 and 9 (both inclusive). The idea is to start searching from 9 so that the number of digits in the result is minimized. For example, 9 is preferred over 33 and 8 is preferred over 24.
Store all found factors in an array. The array would contain digits in non-increasing order, so finally print the array in reverse order.
Following is the implementation of above concept.
C++
#include<bits/stdc++.h> using namespace std; // Maximum number of digits in output #define MAX 50 // prints the smallest number // whose digits multiply to n void findSmallest( int n) { int i, j = 0; // To store digits of result // in reverse order int res[MAX]; // Case 1: If number is smaller than 10 if (n < 10) { cout << n + 10; return ; } // Case 2: Start with 9 and // try every possible digit for (i = 9; i > 1; i--) { // If current digit divides n, then store all // occurrences of current digit in res while (n % i == 0) { n = n / i; res[j] = i; j++; } } // If n could not be broken // in form of digits (prime factors // of n are greater than 9) if (n > 10) { cout << "Not possible" ; return ; } // Print the result array in reverse order for (i = j - 1; i >= 0; i--) cout << res[i]; } // Driver Code int main() { findSmallest(7); cout << "\n" ; findSmallest(36); cout << "\n" ; findSmallest(13); cout << "\n" ; findSmallest(100); return 0; } // This code is contributed by Code_Mech |
C
#include<stdio.h> // Maximum number of digits in output #define MAX 50 // prints the smallest number whose digits multiply to n void findSmallest( int n) { int i, j=0; int res[MAX]; // To store digits of result in reverse order // Case 1: If number is smaller than 10 if (n < 10) { printf ( "%d" , n+10); return ; } // Case 2: Start with 9 and try every possible digit for (i=9; i>1; i--) { // If current digit divides n, then store all // occurrences of current digit in res while (n%i == 0) { n = n/i; res[j] = i; j++; } } // If n could not be broken in form of digits (prime factors of n // are greater than 9) if (n > 10) { printf ( "Not possible" ); return ; } // Print the result array in reverse order for (i=j-1; i>=0; i--) printf ( "%d" , res[i]); } // Driver program to test above function int main() { findSmallest(7); printf ( "\n" ); findSmallest(36); printf ( "\n" ); findSmallest(13); printf ( "\n" ); findSmallest(100); return 0; } |
Java
// Java program to find the smallest number whose // digits multiply to a given number n import java.io.*; class Smallest { // Function to prints the smallest number whose // digits multiply to n static void findSmallest( int n) { int i, j= 0 ; int MAX = 50 ; // To store digits of result in reverse order int [] res = new int [MAX]; // Case 1: If number is smaller than 10 if (n < 10 ) { System.out.println(n+ 10 ); return ; } // Case 2: Start with 9 and try every possible digit for (i= 9 ; i> 1 ; i--) { // If current digit divides n, then store all // occurrences of current digit in res while (n%i == 0 ) { n = n/i; res[j] = i; j++; } } // If n could not be broken in form of digits (prime factors of n // are greater than 9) if (n > 10 ) { System.out.println( "Not possible" ); return ; } // Print the result array in reverse order for (i=j- 1 ; i>= 0 ; i--) System.out.print(res[i]); System.out.println(); } // Driver program public static void main (String[] args) { findSmallest( 7 ); findSmallest( 36 ); findSmallest( 13 ); findSmallest( 100 ); } } // Contributed by Pramod Kumar |
Python3
# Python code to find the smallest number # whose digits multiply to give n # function to print the smallest number whose # digits multiply to n def findSmallest(n): # Case 1 - If the number is smaller than 10 if n < 10 : print (n + 10 ) return # Case 2 - Start with 9 and try every possible digit res = [] # to sort digits for i in range ( 9 , 1 , - 1 ): # If current digit divides n, then store all # occurrences of current digit in res while n % i = = 0 : n = n / i res.append(i) # If n could not be broken in the form of digits # prime factors of n are greater than 9 if n > 10 : print ( "Not Possible" ) return # Print the number from result array in reverse order n = res[ len (res) - 1 ] for i in range ( len (res) - 2 , - 1 , - 1 ): n = 10 * n + res[i] print (n) # Driver Code findSmallest( 7 ) findSmallest( 36 ) findSmallest( 13 ) findSmallest( 100 ) # This code is contributed by Harshit Agrawal |
C#
// C# program to find the smallest number whose // digits multiply to a given number n using System; class GFG { // Function to prints the smallest number // whose digits multiply to n static void findSmallest( int n) { int i, j=0; int MAX = 50; // To store digits of result in // reverse order int []res = new int [MAX]; // Case 1: If number is smaller than 10 if (n < 10) { Console.WriteLine(n + 10); return ; } // Case 2: Start with 9 and try every // possible digit for (i = 9; i > 1; i--) { // If current digit divides n, then // store all occurrences of current // digit in res while (n % i == 0) { n = n / i; res[j] = i; j++; } } // If n could not be broken in form of // digits (prime factors of n // are greater than 9) if (n > 10) { Console.WriteLine( "Not possible" ); return ; } // Print the result array in reverse order for (i = j-1; i >= 0; i--) Console.Write(res[i]); Console.WriteLine(); } // Driver program public static void Main () { findSmallest(7); findSmallest(36); findSmallest(13); findSmallest(100); } } // This code is contributed by nitin mittal. |
PHP
<?php // PHP program to find the // smallest number whose // digits multiply to a // given number n prints the // smallest number whose digits // multiply to n function findSmallest( $n ) { // To store digits of // result in reverse order $i ; $j = 0; $res ; // Case 1: If number is // smaller than 10 if ( $n < 10) { echo $n + 10; return ; } // Case 2: Start with 9 and // try every possible digit for ( $i = 9; $i > 1; $i --) { // If current digit divides // n, then store all // occurrences of current // digit in res while ( $n % $i == 0) { $n = $n / $i ; $res [ $j ] = $i ; $j ++; } } // If n could not be broken // in form of digits // (prime factors of n // are greater than 9) if ( $n > 10) { echo "Not possible" ; return ; } // Print the result // array in reverse order for ( $i = $j - 1; $i >= 0; $i --) echo $res [ $i ]; } // Driver Code findSmallest(7); echo "\n" ; findSmallest(36); echo "\n" ; findSmallest(13); echo "\n" ; findSmallest(100); // This code is contributed by ajit ?> |
Javascript
<script> // Javascript program to find the smallest number whose // digits multiply to a given number n // Maximum number of digits in output // prints the smallest number // whose digits multiply to n function findSmallest(n) { let i, j = 0; // To store digits of result // in reverse order let res = new Array(50); // Case 1: If number is smaller than 10 if (n < 10) { document.write(n + 10); return ; } // Case 2: Start with 9 and // try every possible digit for (i = 9; i > 1; i--) { // If current digit divides n, then store all // occurrences of current digit in res while (n % i == 0) { n = Math.floor(n / i); res[j] = i; j++; } } // If n could not be broken // in form of digits (prime factors // of n are greater than 9) if (n > 10) { document.write( "Not possible" ); return ; } // Print the result array in reverse order for (i = j - 1; i >= 0; i--) document.write(res[i]); } // Driver Code findSmallest(7); document.write( "<br>" ); findSmallest(36); document.write( "<br>" ); findSmallest(13); document.write( "<br>" ); findSmallest(100); // This code is contributed by Mayank Tyagi </script> |
Output:
17 49 Not possible 455
Time Complexity: O(log2n * 10)
Auxiliary Space: O(MAX)
This article is contributed by Ashish Bansal. Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above
Please Login to comment...