Find Shortest distance from a guard in a Bank
Given a matrix that is filled with ‘O’, ‘G’, and ‘W’ where ‘O’ represents open space, ‘G’ represents guards and ‘W’ represents walls in a Bank. Replace all of the O’s in the matrix with their shortest distance from a guard, without being able to go through any walls. Also, replace the guards with 0 and walls with -1 in output matrix.
Expected Time complexity is O(MN) for a M x N matrix.
Expected Auxiliary Space is O(MN) for a M x N matrix.
Examples:
O ==> Open Space G ==> Guard W ==> Wall Input: O O O O G O W W O O O O O W O G W W W O O O O O G Output: 3 3 2 1 0 2 -1 -1 2 1 1 2 3 -1 2 0 -1 -1 -1 1 1 2 2 1 0
The idea is to do BFS. We first enqueue all cells containing the guards and loop till queue is not empty. For each iteration of the loop, we dequeue the front cell from the queue and for each of its four adjacent cells, if cell is an open area and its distance from guard is not calculated yet, we update its distance and enqueue it. Finally after BFS procedure is over, we print the distance matrix.
Below are implementation of above idea –
C++
// C++ program to replace all of the O's in the matrix // with their shortest distance from a guard #include <bits/stdc++.h> using namespace std; // store dimensions of the matrix #define M 5 #define N 5 // An Data Structure for queue used in BFS struct queueNode { // i, j and distance stores x and y-coordinates // of a matrix cell and its distance from guard // respectively int i, j, distance; }; // These arrays are used to get row and column // numbers of 4 neighbors of a given cell int row[] = { -1, 0, 1, 0}; int col[] = { 0, 1, 0, -1 }; // return true if row number and column number // is in range bool isValid( int i, int j) { if ((i < 0 || i > M - 1) || (j < 0 || j > N - 1)) return false ; return true ; } // return true if current cell is an open area and its // distance from guard is not calculated yet bool isSafe( int i, int j, char matrix[][N], int output[][N]) { if (matrix[i][j] != 'O' || output[i][j] != -1) return false ; return true ; } // Function to replace all of the O's in the matrix // with their shortest distance from a guard void findDistance( char matrix[][N]) { int output[M][N]; queue<queueNode> q; // finding Guards location and adding into queue for ( int i = 0; i < M; i++) { for ( int j = 0; j < N; j++) { // initialize each cell as -1 output[i][j] = -1; if (matrix[i][j] == 'G' ) { queueNode pos = {i, j, 0}; q.push(pos); // guard has 0 distance output[i][j] = 0; } } } // do till queue is empty while (!q.empty()) { // get the front cell in the queue and update // its adjacent cells queueNode curr = q.front(); int x = curr.i, y = curr.j, dist = curr.distance; // do for each adjacent cell for ( int i = 0; i < 4; i++) { // if adjacent cell is valid, has path and // not visited yet, en-queue it. if (isSafe(x + row[i], y + col[i], matrix, output) && isValid(x + row[i], y + col[i])) { output[x + row[i]][y + col[i]] = dist + 1; queueNode pos = {x + row[i], y + col[i], dist + 1}; q.push(pos); } } // dequeue the front cell as its distance is found q.pop(); } // print output matrix for ( int i = 0; i < M; i++) { for ( int j = 0; j < N; j++) cout << std::setw(3) << output[i][j]; cout << endl; } } // Driver code int main() { char matrix[][N] = { { 'O' , 'O' , 'O' , 'O' , 'G' }, { 'O' , 'W' , 'W' , 'O' , 'O' }, { 'O' , 'O' , 'O' , 'W' , 'O' }, { 'G' , 'W' , 'W' , 'W' , 'O' }, { 'O' , 'O' , 'O' , 'O' , 'G' } }; findDistance(matrix); return 0; } |
Java
// Java program to replace all of the O's // in the matrix with their shortest // distance from a guard package Graphs; import java.util.LinkedList; import java.util.Queue; public class MinDistanceFromaGuardInBank{ // Store dimensions of the matrix int M = 5 ; int N = 5 ; class Node { int i, j, dist; Node( int i, int j, int dist) { this .i = i; this .j = j; this .dist = dist; } } // These arrays are used to get row // and column numbers of 4 neighbors // of a given cell int row[] = { - 1 , 0 , 1 , 0 }; int col[] = { 0 , 1 , 0 , - 1 }; // Return true if row number and // column number is in range boolean isValid( int i, int j) { if ((i < 0 || i > M - 1 ) || (j < 0 || j > N - 1 )) return false ; return true ; } // Return true if current cell is // an open area and its distance // from guard is not calculated yet boolean isSafe( int i, int j, char matrix[][], int output[][]) { if (matrix[i][j] != 'O' || output[i][j] != - 1 ) return false ; return true ; } // Function to replace all of the O's // in the matrix with their shortest // distance from a guard void findDistance( char matrix[][]) { int output[][] = new int [M][N]; Queue<Node> q = new LinkedList<Node>(); // Finding Guards location and // adding into queue for ( int i = 0 ; i < M; i++) { for ( int j = 0 ; j < N; j++) { // Initialize each cell as -1 output[i][j] = - 1 ; if (matrix[i][j] == 'G' ) { q.add( new Node(i, j, 0 )); // Guard has 0 distance output[i][j] = 0 ; } } } // Do till queue is empty while (!q.isEmpty()) { // Get the front cell in the queue // and update its adjacent cells Node curr = q.peek(); int x = curr.i; int y = curr.j; int dist = curr.dist; // Do for each adjacent cell for ( int i = 0 ; i < 4 ; i++) { // If adjacent cell is valid, has // path and not visited yet, // en-queue it. if (isValid(x + row[i], y + col[i])) { if (isSafe(x + row[i], y + col[i], matrix, output)) { output[x + row[i]][y + col[i]] = dist + 1 ; q.add( new Node(x + row[i], y + col[i], dist + 1 )); } } } // Dequeue the front cell as // its distance is found q.poll(); } // Print output matrix for ( int i = 0 ; i < M; i++) { for ( int j = 0 ; j < N; j++) { System.out.print(output[i][j] + " " ); } System.out.println(); } } // Driver code public static void main(String args[]) { char matrix[][] = { { 'O' , 'O' , 'O' , 'O' , 'G' }, { 'O' , 'W' , 'W' , 'O' , 'O' }, { 'O' , 'O' , 'O' , 'W' , 'O' }, { 'G' , 'W' , 'W' , 'W' , 'O' }, { 'O' , 'O' , 'O' , 'O' , 'G' } }; MinDistanceFromaGuardInBank g = new MinDistanceFromaGuardInBank(); g.findDistance(matrix); } } // This code is contributed by Shobhit Yadav |
Python3
# Python3 program to replace all of the O's in the matrix # with their shortest distance from a guard from collections import deque as queue # store dimensions of the matrix M = 5 N = 5 # These arrays are used to get row and column # numbers of 4 neighbors of a given cell row = [ - 1 , 0 , 1 , 0 ] col = [ 0 , 1 , 0 , - 1 ] # return true if row number and column number # is in range def isValid(i, j): if ((i < 0 or i > M - 1 ) or (j < 0 or j > N - 1 )): return False return True # return true if current cell is an open area and its # distance from guard is not calculated yet def isSafe(i, j,matrix, output): if (matrix[i][j] ! = 'O' or output[i][j] ! = - 1 ): return False return True # Function to replace all of the O's in the matrix # with their shortest distance from a guard def findDistance(matrix): output = [[ - 1 for i in range (N)] for i in range (M)] q = queue() # finding Guards location and adding into queue for i in range (M): for j in range (N): # initialize each cell as -1 output[i][j] = - 1 if (matrix[i][j] = = 'G' ): pos = [i, j, 0 ] q.appendleft(pos) # guard has 0 distance output[i][j] = 0 # do till queue is empty while ( len (q) > 0 ): # get the front cell in the queue and update # its adjacent cells curr = q.pop() x, y, dist = curr[ 0 ], curr[ 1 ], curr[ 2 ] # do for each adjacent cell for i in range ( 4 ): # if adjacent cell is valid, has path and # not visited yet, en-queue it. if isValid(x + row[i], y + col[i]) and isSafe(x + row[i], y + col[i], matrix, output) : output[x + row[i]][y + col[i]] = dist + 1 pos = [x + row[i], y + col[i], dist + 1 ] q.appendleft(pos) # print output matrix for i in range (M): for j in range (N): if output[i][j] > 0 : print (output[i][j], end = " " ) else : print (output[i][j],end = " " ) print () # Driver code matrix = [[ 'O' , 'O' , 'O' , 'O' , 'G' ], [ 'O' , 'W' , 'W' , 'O' , 'O' ], [ 'O' , 'O' , 'O' , 'W' , 'O' ], [ 'G' , 'W' , 'W' , 'W' , 'O' ], [ 'O' , 'O' , 'O' , 'O' , 'G' ]] findDistance(matrix) # This code is contributed by mohit kumar 29 |
C#
// C# program to replace all of the O's // in the matrix with their shortest // distance from a guard using System; using System.Collections.Generic; public class Node { public int i, j, dist; public Node( int i, int j, int dist) { this .i = i; this .j = j; this .dist = dist; } } public class MinDistanceFromaGuardInBank { // Store dimensions of the matrix static int M = 5; static int N = 5; // These arrays are used to get row // and column numbers of 4 neighbors // of a given cell static int [] row = { -1, 0, 1, 0 }; static int [] col = { 0, 1, 0, -1 }; // Return true if row number and // column number is in range static bool isValid( int i, int j) { if ((i < 0 || i > M - 1) || (j < 0 || j > N - 1)) return false ; return true ; } // Return true if current cell is // an open area and its distance // from guard is not calculated yet static bool isSafe( int i, int j, char [,] matrix, int [,] output) { if (matrix[i,j] != 'O' || output[i,j] != -1) { return false ; } return true ; } // Function to replace all of the O's // in the matrix with their shortest // distance from a guard static void findDistance( char [,] matrix) { int [,] output = new int [M,N]; Queue<Node> q = new Queue<Node>(); // Finding Guards location and // adding into queue for ( int i = 0; i < M; i++) { for ( int j = 0; j < N; j++) { // Initialize each cell as -1 output[i, j] = -1; if (matrix[i, j] == 'G' ) { q.Enqueue( new Node(i, j, 0)); // Guard has 0 distance output[i, j] = 0; } } } // Do till queue is empty while (q.Count != 0) { // Get the front cell in the queue // and update its adjacent cells Node curr = q.Peek(); int x = curr.i; int y = curr.j; int dist = curr.dist; // Do for each adjacent cell for ( int i = 0; i < 4; i++) { // If adjacent cell is valid, has // path and not visited yet, // en-queue it. if (isValid(x + row[i], y + col[i])) { if (isSafe(x + row[i], y + col[i],matrix, output)) { output[x + row[i] , y + col[i]] = dist + 1; q.Enqueue( new Node(x + row[i],y + col[i],dist + 1)); } } } // Dequeue the front cell as // its distance is found q.Dequeue(); } // Print output matrix for ( int i = 0; i < M; i++) { for ( int j = 0; j < N; j++) { Console.Write(output[i,j] + " " ); } Console.WriteLine(); } } // Driver code static public void Main () { char [,] matrix ={ { 'O' , 'O' , 'O' , 'O' , 'G' }, { 'O' , 'W' , 'W' , 'O' , 'O' }, { 'O' , 'O' , 'O' , 'W' , 'O' }, { 'G' , 'W' , 'W' , 'W' , 'O' }, { 'O' , 'O' , 'O' , 'O' , 'G' } }; findDistance(matrix); } } // This code is contributed by avanitrachhadiya2155 |
Javascript
<script> // Javascript program to replace all of the O's // in the matrix with their shortest // distance from a guard // Store dimensions of the matrix let M = 5; let N = 5; class Node { constructor(i,j,dist) { this .i = i; this .j = j; this .dist = dist; } } // These arrays are used to get row // and column numbers of 4 neighbors // of a given cell let row=[-1, 0, 1, 0]; let col=[0, 1, 0, -1 ]; // Return true if row number and // column number is in range function isValid(i,j) { if ((i < 0 || i > M - 1) || (j < 0 || j > N - 1)) return false ; return true ; } // Return true if current cell is // an open area and its distance // from guard is not calculated yet function isSafe(i,j,matrix,output) { if (matrix[i][j] != 'O ' || output[i][j] != -1) return false; return true; } // Function to replace all of the O' s // in the matrix with their shortest // distance from a guard function findDistance(matrix) { let output = new Array(M); for (let i=0;i<M;i++) { output[i]= new Array(N); } let q = []; // Finding Guards location and // adding into queue for (let i = 0; i < M; i++) { for (let j = 0; j < N; j++) { // Initialize each cell as -1 output[i][j] = -1; if (matrix[i][j] == 'G' ) { q.push( new Node(i, j, 0)); // Guard has 0 distance output[i][j] = 0; } } } // Do till queue is empty while (q.length!=0) { // Get the front cell in the queue // and update its adjacent cells let curr = q[0]; let x = curr.i; let y = curr.j; let dist = curr.dist; // Do for each adjacent cell for (let i = 0; i < 4; i++) { // If adjacent cell is valid, has // path and not visited yet, // en-queue it. if (isValid(x + row[i], y + col[i])) { if (isSafe(x + row[i], y + col[i], matrix, output)) { output[x + row[i]][y + col[i]] = dist + 1; q.push( new Node(x + row[i], y + col[i], dist + 1)); } } } // Dequeue the front cell as // its distance is found q.shift(); } // Print output matrix for (let i = 0; i < M; i++) { for (let j = 0; j < N; j++) { document.write(output[i][j] + " " ); } document.write( "<br>" ); } } // Driver code let matrix=[[ 'O' , 'O' , 'O' , 'O' , 'G' ], [ 'O' , 'W' , 'W' , 'O' , 'O' ], [ 'O' , 'O' , 'O' , 'W' , 'O' ], [ 'G' , 'W' , 'W' , 'W' , 'O' ], [ 'O' , 'O' , 'O' , 'O' , 'G' ]]; findDistance(matrix); // This code is contributed by ab2127 </script> |
3 3 2 1 0 2 -1 -1 2 1 1 2 3 -1 2 0 -1 -1 -1 1 1 2 2 1 0
Time Complexity: O(n*m)
Auxiliary Space: O(n*m)
This article is contributed by Aditya Goel. If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please Login to comment...