Find Prime number just less than and just greater each element of given Array
Given an integer array A[] of size N, the task is to find the prime numbers just less and just greater than A[i] (for all 0<=i<N).
Examples:
Input: A={17, 28}, N=2
Output:
13 19
23 29
Explanation:
13 is the prime number just less than 17.
19 is the prime number just greater than 17.
23 is the prime number just less than 28.
29 is the prime number just greater than 28.Input: A={126, 64, 2896, 156}, N=4
Output:
113 127
61 67
2887 2897
151 157
Naive Approach:
Observation: The Maximal Primal Gap for numbers less than 109 is 292.
The Naive Approach would be to check for primality by checking if a number has any factor other than 1 and itself. Follow the steps below to solve the problem:
Traverse the array A, and for each current index i, do the following:
- Iterate from A[i]-1 in the descending order, and for each current index j, do the following:
- Check if j is prime or not by checking if it has any factor other than 1 and itself.
- If j is prime, print j and terminate the inner loop. This gives the prime number just less than A[i].
- Iterate from A[i]+1 in the ascending order, and for each current index j, do the following:
- Check if j is prime or not by checking if it has any factor other than 1 and itself.
- If j is prime, print j and terminate the inner loop. This gives the prime number just less than A[i],
Below is the implementation of the above approach:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Utility function to check // for primality of a number X by // checking whether X haACCs any // factors other than 1 and itself. bool isPrime( int X) { for ( int i = 2; i * i <= X; i++) if (X % i == 0) // Factor found return false ; return true ; } // Function to print primes // just less than and just greater // than of each element in an array void printPrimes( int A[], int N) { // Traverse the array for ( int i = 0; i < N; i++) { // Traverse for finding prime // just less than A[i] for ( int j = A[i] - 1;; j--) { // Prime just less than A[i] found if (isPrime(j)) { cout << j << " " ; break ; } } // Traverse for finding prime // just greater than A[i] for ( int j = A[i] + 1;; j++) { // Prime just greater than A[i] found if (isPrime(j)) { cout << j << " " ; break ; } } cout << endl; } } // Driver code int main() { // Input int A[] = { 17, 28 }; int N = sizeof (A) / sizeof (A[0]); // Function call printPrimes(A, N); return 0; } |
Java
// Java program for the above approach import java.io.*; class GFG{ // Utility function to check // for primality of a number X by // checking whether X has any // factors other than 1 and itself. static boolean isPrime( int X) { for ( int i = 2 ; i * i <= X; i++) // Factor found if (X % i == 0 ) return false ; return true ; } // Function to print primes // just less than and just greater // than of each element in an array static void printPrimes( int A[], int N) { // Traverse the array for ( int i = 0 ; i < N; i++) { // Traverse for finding prime // just less than A[i] for ( int j = A[i] - 1 ;; j--) { // Prime just less than A[i] found if (isPrime(j)) { System.out.print(j + " " ); break ; } } // Traverse for finding prime // just greater than A[i] for ( int j = A[i] + 1 ;; j++) { // Prime just greater than A[i] found if (isPrime(j)) { System.out.print( j + " " ); break ; } } System.out.println(); } } // Driver code public static void main(String[] args) { // Input int A[] = { 17 , 28 }; int N = A.length; // Function call printPrimes(A, N); } } // This code is contributed by sanjoy_62 |
Python3
# Python3 program for the above approach from math import sqrt # Utility function to check # for primality of a number X by # checking whether X haACCs any # factors other than 1 and itself. def isPrime(X): for i in range ( 2 , int (sqrt(X)) + 1 , 1 ): if (X % i = = 0 ): # Factor found return False return True # Function to print primes # just less than and just greater # than of each element in an array def printPrimes(A, N): # Traverse the array for i in range (N): # Traverse for finding prime # just less than A[i] j = A[i] - 1 while ( 1 ): # Prime just less than A[i] found if (isPrime(j)): print (j, end = " " ) break j - = 1 # Traverse for finding prime # just greater than A[i] j = A[i] + 1 while ( 1 ): # Prime just greater than A[i] found if (isPrime(j)): print (j, end = " " ) break j + = 1 print ( "\n" , end = "") # Driver code if __name__ = = '__main__' : # Input A = [ 17 , 28 ] N = len (A) # Function call printPrimes(A, N) # This code is contributed by SURENDRA_GANGWAR |
C#
// C# program for the above approach using System; class GFG{ // Utility function to check // for primality of a number X by // checking whether X has any // factors other than 1 and itself. static bool isPrime( int X) { for ( int i = 2; i * i <= X; i++) // Factor found if (X % i == 0) return false ; return true ; } // Function to print primes // just less than and just greater // than of each element in an array static void printPrimes( int [] A, int N) { // Traverse the array for ( int i = 0; i < N; i++) { // Traverse for finding prime // just less than A[i] for ( int j = A[i] - 1;; j--) { // Prime just less than A[i] found if (isPrime(j)) { Console.Write(j + " " ); break ; } } // Traverse for finding prime // just greater than A[i] for ( int j = A[i] + 1;; j++) { // Prime just greater than A[i] found if (isPrime(j)) { Console.Write(j + " " ); break ; } } Console.WriteLine(); } } // Driver code public static void Main() { // Input int []A = { 17, 28 }; int N = A.Length; // Function call printPrimes(A, N); } } // This code is contributed by subhammahato348 |
Javascript
<script> // Javascript program for the above approach // Utility function to check // for primality of a number X by // checking whether X haACCs any // factors other than 1 and itself. function isPrime(X) { for (let i = 2; i * i <= X; i++) if (X % i == 0) // Factor found return false ; return true ; } // Function to print primes // just less than and just greater // than of each element in an array function printPrimes(A, N) { // Traverse the array for (let i = 0; i < N; i++) { // Traverse for finding prime // just less than A[i] for (let j = A[i] - 1; ; j--) { // Prime just less than A[i] found if (isPrime(j)) { document.write(j + " " ); break ; } } // Traverse for finding prime // just greater than A[i] for (let j = A[i] + 1; ; j++) { // Prime just greater than A[i] found if (isPrime(j)) { document.write(j + " " ); break ; } } document.write( "<br>" ); } } // Driver code // Input let A = [17, 28]; let N = A.length; // Function call printPrimes(A, N); // This code is contributed by _saurabh_jaiswal. </script> |
13 19 23 29
Time Complexity: O(N*G*√M), where G is the maximal primal gap and M is the largest element in A.
Auxiliary Space: O(1)
Efficient Approach 1: Instead of checking for individual numbers, all primes numbers can be recalculated using the Sieve of Eratosthenes.
Below is the implementation of the above approach:
C++
#include <bits/stdc++.h> using namespace std; const int M = 1e6; // Boolean array to store // if a number is prime or not bool isPrime[M]; void SieveOfEratosthenes() { // assigh value false // to the boolean array isprime memset (isPrime, true , sizeof (isPrime)); for ( int i = 2; i * i <= M; i++) { // If isPrime[i] is not changed, // then it is a prime if (isPrime[i]) { // Update all multiples of i greater than or // equal to the square of it numbers which are // multiple of i and are less than i^2 are // already been marked. for ( int j = i * i; j < M; j += i) isPrime[j] = false ; } } } // Function to print primes // just less than and just greater // than of each element in an array void printPrimes( int A[], int N) { // Precalculating SieveOfEratosthenes(); // Traverse the array for ( int i = 0; i < N; i++) { // Traverse for finding // prime just less than A[i] for ( int j = A[i] - 1;; j--) { // Prime just less than A[i] found if (isPrime[j]) { cout << j << " " ; break ; } } // Traverse for finding // prime just greater than A[i] for ( int j = A[i] + 1;; j++) { // Prime just greater than A[i] found if (isPrime[j]) { cout << j << " " ; break ; } } cout << endl; } } // Driver code int main() { // Input int A[] = { 17, 28 }; int N = sizeof (A) / sizeof (A[0]); // Function call printPrimes(A, N); return 0; } |
Java
import java.util.*; class GFG{ static int M = 1000000 ; // Boolean array to store // if a number is prime or not static boolean isPrime[] = new boolean [M]; static void SieveOfEratosthenes() { // Assigh value false // to the boolean array isprime Arrays.fill(isPrime, true ); for ( int i = 2 ; i * i <= M; i++) { // If isPrime[i] is not changed, // then it is a prime if (isPrime[i]) { // Update all multiples of i greater than or // equal to the square of it numbers which are // multiple of i and are less than i^2 are // already been marked. for ( int j = i * i; j < M; j += i) isPrime[j] = false ; } } } // Function to print primes // just less than and just greater // than of each element in an array static void printPrimes( int A[], int N) { // Precalculating SieveOfEratosthenes(); // Traverse the array for ( int i = 0 ; i < N; i++) { // Traverse for finding // prime just less than A[i] for ( int j = A[i] - 1 ;; j--) { // Prime just less than A[i] found if (isPrime[j]) { System.out.print( j + " " ); break ; } } // Traverse for finding // prime just greater than A[i] for ( int j = A[i] + 1 ;; j++) { // Prime just greater than A[i] found if (isPrime[j]) { System.out.print(j + " " ); break ; } } System.out.println(); } } // Driver code public static void main(String[] args) { // Input int A[] = { 17 , 28 }; int N = A.length; // Function call printPrimes(A, N); } } // This code is contributed by sanjoy_62 |
Python3
# Python code for the above approach M = 1000000 # Boolean array to store if # a number is prime or not isPrime = [ True ] * M def SieveOfEratosthenes(): i = 2 while ( 1 ): if ((i * i) > M): break # If isPrime[i] is not changed, # then it is a prime if (isPrime[i]): # Update all multiples of i greater than or # equal to the square of it numbers which are # multiple of i and are less than i^2 are # already been marked. j = i * i while (j < M): isPrime[j] = False j + = i i + = 1 # Function to print primes just less than # and just greater than of each element in # an array def printPrimes(A, N): # Precalculating SieveOfEratosthenes() # Traverse the array for i in range (N): # Traverse for finding prime # just less than A[i] j = A[i] - 1 while ( 1 ): # Prime just less than A[i] found if (isPrime[j]): print (j, end = " " ) break j - = 1 # Traverse for finding prime # just greater than A[i] j = A[i] + 1 while ( 1 ): # Prime just greater # than A[i] found if (isPrime[j]): print (j, end = "\n" ) break j + = 1 A = [ 17 , 28 ] N = len (A) # Function call printPrimes(A, N) # This code is contributed by lokeshmvs21. |
C#
using System; class GFG { static int M = 1000000; // Boolean array to store // if a number is prime or not static bool [] isPrime = new bool [M]; static void SieveOfEratosthenes() { // Assigh value false // to the boolean array isprime Array.Fill(isPrime, true ); for ( int i = 2; i * i <= M; i++) { // If isPrime[i] is not changed, // then it is a prime if (isPrime[i]) { // Update all multiples of i greater than or // equal to the square of it numbers which // are multiple of i and are less than i^2 // are already been marked. for ( int j = i * i; j < M; j += i) isPrime[j] = false ; } } } // Function to print primes // just less than and just greater // than of each element in an array static void printPrimes( int [] A, int N) { // Precalculating SieveOfEratosthenes(); // Traverse the array for ( int i = 0; i < N; i++) { // Traverse for finding // prime just less than A[i] for ( int j = A[i] - 1;; j--) { // Prime just less than A[i] found if (isPrime[j]) { Console.Write(j + " " ); break ; } } // Traverse for finding // prime just greater than A[i] for ( int j = A[i] + 1;; j++) { // Prime just greater than A[i] found if (isPrime[j]) { Console.Write(j + " " ); break ; } } Console.WriteLine(); } } // Driver code public static void Main() { // Input int [] A = { 17, 28 }; int N = A.Length; // Function call printPrimes(A, N); } } // This code is contributed by subham348. |
Javascript
<script> const M = 1000000; // Boolean array to store // if a number is prime or not let isPrime = new Array(M).fill( true ); function SieveOfEratosthenes() { for (let i = 2; i * i <= M; i++) { // If isPrime[i] is not changed, // then it is a prime if (isPrime[i]) { // Update all multiples of i greater than or // equal to the square of it numbers which are // multiple of i and are less than i^2 are // already been marked. for (let j = i * i; j < M; j += i) isPrime[j] = false ; } } } // Function to print primes // just less than and just greater // than of each element in an array function printPrimes(A, N) { // Precalculating SieveOfEratosthenes(); // Traverse the array for (let i = 0; i < N; i++) { // Traverse for finding // prime just less than A[i] for (let j = A[i] - 1;; j--) { // Prime just less than A[i] found if (isPrime[j]) { document.write(j + " " ); break ; } } // Traverse for finding // prime just greater than A[i] for (let j = A[i] + 1;; j++) { // Prime just greater than A[i] found if (isPrime[j]) { document.write(j + " " ); break ; } } document.write( "<br>" ); } } // Driver code // Input let A = [ 17, 28 ]; let N = A.length; // Function call printPrimes(A, N); </script> |
13 19 23 29
Time Complexity: O(N*G+MLog(Log(M))), where G is the maximal primal gap and M is the largest element in A.
Auxiliary Space: O(M)
Efficient Approach 2: The Millar-Rabin primality test can be used.
C++
#include <bits/stdc++.h> using namespace std; // Utility function to do modular exponentiation. // It returns (x^y) % p int power( int x, unsigned int y, int p) { int res = 1; // Initialize result x = x % p; // Update x if it is more than or // equal to p while (y > 0) { // If y is odd, multiply x with result if (y & 1) res = (res * x) % p; // y must be even now y = y >> 1; // y = y/2 x = (x * x) % p; } return res; } // This function is called for all k trials. // It returns false if n is composite // and returns true if n is probably prime. // d is an odd number such that // d*2<sup>r</sup> = n-1 for some r >= 1 bool miillerTest( int d, int n) { // Pick a random number in [2..n-2] // Corner cases make sure that n > 4 int a = 2 + rand () % (n - 4); // Compute a^d % n int x = power(a, d, n); if (x == 1 || x == n - 1) return true ; // Keep squaring x while one // of the following doesn't happen // (i) d does not reach n-1 // (ii) (x^2) % n is not 1 // (iii) (x^2) % n is not n-1 while (d != n - 1) { x = (x * x) % n; d *= 2; if (x == 1) return false ; if (x == n - 1) return true ; } // Return composite return false ; } // It returns false if n is // composite and returns true if n // is probably prime. // k determines accuracy level. Higher // value of k indicates more accuracy. bool isPrime( int n) { // number of iterations int k = 4; // Corner cases if (n <= 1 || n == 4) return false ; if (n <= 3) return true ; // Find r such that // n = 2^d * r + 1 for some r >= 1 int d = n - 1; while (d % 2 == 0) d /= 2; // Iterate given number of 'k' times for ( int i = 0; i < k; i++) if (!miillerTest(d, n)) return false ; return true ; } // Function to print primes // just less than and just greater // than of each element in an array void printPrimes( int A[], int N) { // Precalculating // Traverse the array for ( int i = 0; i < N; i++) { // Traverse for finding // prime just less than A[i] for ( int j = A[i] - 1;; j--) { // Prime just less than A[i] found if (isPrime(j)) { cout << j << " " ; break ; } } // Traverse for finding // prime just greater than A[i] for ( int j = A[i] + 1;; j++) { // Prime just greater than A[i] found if (isPrime(j)) { cout << j << " " ; break ; } } cout << endl; } } // Driver code int main() { // Input int A[] = { 17, 28 }; int N = sizeof (A) / sizeof (A[0]); // Function call printPrimes(A, N); return 0; } |
Java
import java.util.*; class GFG { // Utility function to do modular exponentiation. // It returns (x^y) % p static int power( int x, int y, int p) { int res = 1 ; // Initialize result x = x % p; // Update x if it is more than or // equal to p while (y > 0 ) { // If y is odd, multiply x with result if (y % 2 == 1 ) res = (res * x) % p; // y must be even now y = y >> 1 ; // y = y/2 x = (x * x) % p; } return res; } // This function is called for all k trials. // It returns false if n is composite // and returns true if n is probably prime. // d is an odd number such that // d*2<sup>r</sup> = n-1 for some r >= 1 static boolean miillerTest( int d, int n) { // Pick a random number in [2..n-2] // Corner cases make sure that n > 4 int a = 2 + ( int )(Math.random()* 100000 ) % (n - 4 ); // Compute a^d % n int x = power(a, d, n); if (x == 1 || x == n - 1 ) return true ; // Keep squaring x while one // of the following doesn't happen // (i) d does not reach n-1 // (ii) (x^2) % n is not 1 // (iii) (x^2) % n is not n-1 while (d != n - 1 ) { x = (x * x) % n; d *= 2 ; if (x == 1 ) return false ; if (x == n - 1 ) return true ; } // Return composite return false ; } // It returns false if n is // composite and returns true if n // is probably prime. // k determines accuracy level. Higher // value of k indicates more accuracy. static boolean isPrime( int n) { // number of iterations int k = 4 ; // Corner cases if (n <= 1 || n == 4 ) return false ; if (n <= 3 ) return true ; // Find r such that // n = 2^d * r + 1 for some r >= 1 int d = n - 1 ; while (d % 2 == 0 ) d /= 2 ; // Iterate given number of 'k' times for ( int i = 0 ; i < k; i++) if (!miillerTest(d, n)) return false ; return true ; } // Function to print primes // just less than and just greater // than of each element in an array static void printPrimes( int A[], int N) { // Precalculating // Traverse the array for ( int i = 0 ; i < N; i++) { // Traverse for finding // prime just less than A[i] for ( int j = A[i] - 1 ;; j--) { // Prime just less than A[i] found if (isPrime(j)) { System.out.print(j+ " " ); break ; } } // Traverse for finding // prime just greater than A[i] for ( int j = A[i] + 1 ;; j++) { // Prime just greater than A[i] found if (isPrime(j)) { System.out.print(j+ " " ); break ; } } System.out.println(); } } // Driver code public static void main(String[] args) { // Input int A[] = { 17 , 28 }; int N = A.length; // Function call printPrimes(A, N); } } // This code is contributed by gauravrajput1 |
Python3
import random, math # Utility function to do modular exponentiation. # It returns (x^y) % p def power(x, y, p): res = 1 # Initialize result x = x % p # Update x if it is more than or # equal to p y = int (y) while y > 0 : # If y is odd, multiply x with result if y & 1 : res = (res * x) % p # y must be even now y = y >> 1 # y = y/2 x = (x * x) % p return res # This function is called for all k trials. # It returns false if n is composite # and returns true if n is probably prime. # d is an odd number such that # d*2^r = n-1 for some r >= 1 def miiller_test(d, n): # Pick a random number in [2..n-2] # Corner cases make sure that n > 4 a = 2 + math.floor(random.randint( 0 , 1000 ) % (n - 4 )) # Compute a^d % n x = power(a, d, n) if x = = 1 or x = = n - 1 : return True # Keep squaring x while one # of the following doesn't happen # (i) d does not reach n-1 # (ii) (x^2) % n is not 1 # (iii) (x^2) % n is not n-1 while d ! = n - 1 : x = (x * x) % n d * = 2 if x = = 1 : return False if x = = n - 1 : return True # Return composite return False # It returns false if n is # composite and returns true if n # is probably prime. # k determines accuracy level. Higher # value of k indicates more accuracy. def is_prime(n): # number of iterations k = 4 # Corner cases if n < = 1 or n = = 4 : return False if n < = 3 : return True # Find r such that # n = 2^d * r + 1 for some r >= 1 d = n - 1 while d % 2 = = 0 : d / = 2 # Iterate given number of 'k' times for i in range (k): if miiller_test(d, n) = = False : return False return True # Function to print primes # just less than and just greater # than of each element in an array def print_primes(A, N): # Precalculating # Traverse the array for i in range (N): # Traverse for finding # prime just less than A[i] ans = [] j = A[i] - 1 while True : if is_prime(j) ! = 0 : ans.append(j) break j - = 1 # Traverse for finding # prime just greater than A[i] j = A[i] + 1 while True : if is_prime(j) ! = 0 : ans.append(j) break j + = 1 print (ans) # Driver code # Input A = [ 17 , 28 ] N = len (A) # Function call print_primes(A, N) # This code is contributed by phasing17. |
C#
// C# program for the above approach using System; class GFG { // Utility function to do modular exponentiation. // It returns (x^y) % p static int power( int x, int y, int p) { int res = 1; // Initialize result x = x % p; // Update x if it is more than or // equal to p while (y > 0) { // If y is odd, multiply x with result if (y %2==1) res = (res * x) % p; // y must be even now y = y >> 1; // y = y/2 x = (x * x) % p; } return res; } // This function is called for all k trials. // It returns false if n is composite // and returns true if n is probably prime. // d is an odd number such that // d*2<sup>r</sup> = n-1 for some r >= 1 static bool miillerTest( int d, int n) { // Pick a random number in [2..n-2] // Corner cases make sure that n > 4 Random rnd = new Random(); int a = 2 + ( int )(rnd.NextDouble()*100000) % (n - 4); // Compute a^d % n int x = power(a, d, n); if (x == 1 || x == n - 1) return true ; // Keep squaring x while one // of the following doesn't happen // (i) d does not reach n-1 // (ii) (x^2) % n is not 1 // (iii) (x^2) % n is not n-1 while (d != n - 1) { x = (x * x) % n; d *= 2; if (x == 1) return false ; if (x == n - 1) return true ; } // Return composite return false ; } // It returns false if n is // composite and returns true if n // is probably prime. // k determines accuracy level. Higher // value of k indicates more accuracy. static bool isPrime( int n) { // number of iterations int k = 4; // Corner cases if (n <= 1 || n == 4) return false ; if (n <= 3) return true ; // Find r such that // n = 2^d * r + 1 for some r >= 1 int d = n - 1; while (d % 2 == 0) d /= 2; // Iterate given number of 'k' times for ( int i = 0; i < k; i++) if (!miillerTest(d, n)) return false ; return true ; } // Function to print primes // just less than and just greater // than of each element in an array static void printPrimes( int [] A, int N) { // Precalculating // Traverse the array for ( int i = 0; i < N; i++) { // Traverse for finding // prime just less than A[i] for ( int j = A[i] - 1;; j--) { // Prime just less than A[i] found if (isPrime(j)) { Console.Write(j+ " " ); break ; } } // Traverse for finding // prime just greater than A[i] for ( int j = A[i] + 1;; j++) { // Prime just greater than A[i] found if (isPrime(j)) { Console.Write(j+ " " ); break ; } } Console.WriteLine(); } } // Driver code public static void Main() { // Input int [] A = { 17, 28 }; int N = A.Length; // Function call printPrimes(A, N); } } // This code is contributed by Pushpesh Raj. |
Javascript
// Utility function to do modular exponentiation. // It returns (x^y) % p function power(x, y, p) { let res = 1; // Initialize result x = x % p; // Update x if it is more than or // equal to p while (y > 0) { // If y is odd, multiply x with result if (y & 1) res = (res * x) % p; // y must be even now y = y >> 1; // y = y/2 x = (x * x) % p; } return res; } // This function is called for all k trials. // It returns false if n is composite // and returns true if n is probably prime. // d is an odd number such that // d*2<sup>r</sup> = n-1 for some r >= 1 function miillerTest( d, n) { // Pick a random number in [2..n-2] // Corner cases make sure that n > 4 let a = 2 + Math.floor(Math.random() * 10000 + 1)% (n - 4); // Compute a^d % n let x = power(a, d, n); if (x == 1 || x == n - 1) return true ; // Keep squaring x while one // of the following doesn't happen // (i) d does not reach n-1 // (ii) (x^2) % n is not 1 // (iii) (x^2) % n is not n-1 while (d != n - 1) { x = (x * x) % n; d *= 2; if (x == 1) return false ; if (x == n - 1) return true ; } // Return composite return false ; } // It returns false if n is // composite and returns true if n // is probably prime. // k determines accuracy level. Higher // value of k indicates more accuracy. function isPrime(n) { // number of iterations let k = 4; // Corner cases if (n <= 1 || n == 4) return false ; if (n <= 3) return true ; // Find r such that // n = 2^d * r + 1 for some r >= 1 let d = n - 1; while (d % 2 == 0) d /= 2; // Iterate given number of 'k' times for (let i = 0; i < k; i++) if (miillerTest(d, n) == false ) return false ; return true ; } // Function to print primes // just less than and just greater // than of each element in an array function printPrimes( A, N) { // Precalculating // Traverse the array for (let i = 0; i < N; i++) { // Traverse for finding // prime just less than A[i] let ans=[]; for (let j = A[i] - 1;; j--) { // Prime just less than A[i] found if (isPrime(j) != 0) { ans.push(j); break ; } } // Traverse for finding // prime just greater than A[i] for (let j = A[i] + 1;; j++) { // Prime just greater than A[i] found if (isPrime(j) != 0) { ans.push(j); break ; } } console.log(ans); } } // Driver code // Input let A = [ 17, 28 ]; let N =A.length; // Function call printPrimes(A, N); // This code is contributed by garg28harsh. |
13 19 23 29
Time Complexity: O(N*G*KLog3M), where G is the maximal primal gap and M is the largest element in A. Here, K=4
Auxiliary Space: O(1)
Please Login to comment...