Skip to content
Related Articles

Related Articles

Find position i to split Array such that prefix sum till i-1, i and suffix sum till i+1 are in GP with common ratio K

View Discussion
Improve Article
Save Article
  • Difficulty Level : Hard
  • Last Updated : 24 Mar, 2022

Given an array, arr[] and a positive integer K. The task is to find the position say i of the element in arr[] such that prefix sum till i-1, i and suffix sum till i+1 are in Geometric Progression with common ratio K

Examples:

Input: arr[] = { 5, 1, 4, 20, 6, 15, 9, 10 }, K = 2
Output: 4
Explanation:  The following operations are performed to get required GP.
Sum of element from position 1 to 3 is 5 + 1 + 4 = 10 and from 5 to 8 is 6 + 15 + 9 + 10 = 40.
And element at position 4 is 20.
Therefore10, 20, 40 is a Geometric Progression series with common ratio K.

Input: arr[] ={ -3, 5, 0, 2, 1, 25, 25, 100 }, K = 5 
Output: 6 

 

Approach:  The given problem can be solved by using Linear Search and basic prefix sum. Follow the steps below to solve the given problem.

  • If the size of array is less than 3 then no sequence is possible so simply return -1.
  • Initialize a variable say, arrSum to store sum of all elements of arr[].
  • Calculate sum of array arr[] and store it in arrSum.
  • if arrSum % R != 0, then return 0. Where R = K * K + 1 + K + 1.
  • Initialize a variable say mid = K * (Sum / R) to store middle element of GP series with common ratio as K.
  • Take a variable say temp to store temporary results.
  • Iterate arr[] from index 1 to (size of arr[]) – 2 with variable i.
    • temp = temp + arr[i-1]
    • if arr[i] = mid
      • if temp = mid/k, return (i+1) as the answer.
      • else return 0.
  • If loop terminates and no element in arr[] is equal to mid then simply return 0.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
#include <iostream>
using namespace std;
 
// Function to check if there is
// an element forming G.P. series
// having common ratio k
int checkArray(int arr[], int N, int k)
{
 
    // If size of array is less than
    // three then return -1
    if (N < 3)
        return -1;
 
    // Initialize the variables
    int i, Sum = 0, temp = 0;
 
    // Calculate total sum of array
    for (i = 0; i < N; i++)
        Sum += arr[i];
 
    int R = (k * k + k + 1);
 
    if (Sum % R != 0)
        return 0;
 
    // Calculate Middle element of G.P. series
    int Mid = k * (Sum / R);
 
    // Iterate over the range
    for (i = 1; i < N - 1; i++) {
 
        // Store the first element of G.P.
        // series in the variable temp
        temp += arr[i - 1];
 
        if (arr[i] == Mid) {
 
            // Return position of middle element
            // of the G.P. series if the first
            // element is in G.P. of common ratio k
            if (temp == Mid / k)
                return i + 1;
 
            // Else return 0
            else
                return 0;
        }
    }
 
    // if middle element is not found in arr[]
    return 0;
}
 
// Driver Code
int main()
{
    // Given array
    int arr[] = { 5, 1, 4, 20, 6, 15, 9, 10 };
 
    int N = sizeof(arr) / sizeof(arr[0]);
 
    int K = 2;
 
    cout << checkArray(arr, N, K) << endl;
 
    return 0;
}


Java




// Java program for the above approach
 
import java.io.*;
 
class GFG {
   
// Function to check if there is
// an element forming G.P. series
// having common ratio k
static int checkArray(int arr[], int N, int k)
{
 
    // If size of array is less than
    // three then return -1
    if (N < 3)
        return -1;
 
    // Initialize the variables
    int i, Sum = 0, temp = 0;
 
    // Calculate total sum of array
    for (i = 0; i < N; i++)
        Sum += arr[i];
 
    int R = (k * k + k + 1);
 
    if (Sum % R != 0)
        return 0;
 
    // Calculate Middle element of G.P. series
    int Mid = k * (Sum / R);
 
    // Iterate over the range
    for (i = 1; i < N - 1; i++) {
 
        // Store the first element of G.P.
        // series in the variable temp
        temp += arr[i - 1];
 
        if (arr[i] == Mid) {
 
            // Return position of middle element
            // of the G.P. series if the first
            // element is in G.P. of common ratio k
            if (temp == Mid / k)
                return i + 1;
 
            // Else return 0
            else
                return 0;
        }
    }
 
    // if middle element is not found in arr[]
    return 0;
}
 
// Driver Code
public static void main (String[] args) {
   
    // Given array
    int arr[] = { 5, 1, 4, 20, 6, 15, 9, 10 };
 
    int N = arr.length;
 
    int K = 2;
 
       System.out.println(checkArray(arr, N, K));
}
}
 
// This code is contributed by Dharanendra L V.


Python3




# python program for the above approach
 
# Function to check if there is
# an element forming G.P. series
# having common ratio k
def checkArray(arr, N, k):
 
        # If size of array is less than
        # three then return -1
    if (N < 3):
        return -1
 
        # Initialize the variables
    Sum = 0
    temp = 0
 
    # Calculate total sum of array
    for i in range(0, N):
        Sum += arr[i]
 
    R = (k * k + k + 1)
 
    if (Sum % R != 0):
        return 0
 
        # Calculate Middle element of G.P. series
    Mid = k * (Sum // R)
 
    # Iterate over the range
    for i in range(1, N-1):
 
                # Store the first element of G.P.
                # series in the variable temp
        temp += arr[i - 1]
 
        if (arr[i] == Mid):
 
                        # Return position of middle element
                        # of the G.P. series if the first
                        # element is in G.P. of common ratio k
            if (temp == Mid // k):
                return i + 1
 
                # Else return 0
            else:
                return 0
 
        # if middle element is not found in arr[]
    return 0
 
# Driver Code
if __name__ == "__main__":
 
    # Given array
    arr = [5, 1, 4, 20, 6, 15, 9, 10]
    N = len(arr)
    K = 2
 
    print(checkArray(arr, N, K))
 
    # This code is contributed by rakeshsahni


C#




// C# program for the above approach
using System;
class GFG {
 
    // Function to check if there is
    // an element forming G.P. series
    // having common ratio k
    static int checkArray(int[] arr, int N, int k)
    {
 
        // If size of array is less than
        // three then return -1
        if (N < 3)
            return -1;
 
        // Initialize the variables
        int i, Sum = 0, temp = 0;
 
        // Calculate total sum of array
        for (i = 0; i < N; i++)
            Sum += arr[i];
 
        int R = (k * k + k + 1);
 
        if (Sum % R != 0)
            return 0;
 
        // Calculate Middle element of G.P. series
        int Mid = k * (Sum / R);
 
        // Iterate over the range
        for (i = 1; i < N - 1; i++) {
 
            // Store the first element of G.P.
            // series in the variable temp
            temp += arr[i - 1];
 
            if (arr[i] == Mid) {
 
                // Return position of middle element
                // of the G.P. series if the first
                // element is in G.P. of common ratio k
                if (temp == Mid / k)
                    return i + 1;
 
                // Else return 0
                else
                    return 0;
            }
        }
 
        // if middle element is not found in arr[]
        return 0;
    }
 
    // Driver Code
    public static void Main(string[] args)
    {
 
        // Given array
        int[] arr = { 5, 1, 4, 20, 6, 15, 9, 10 };
 
        int N = arr.Length;
 
        int K = 2;
 
        Console.WriteLine(checkArray(arr, N, K));
    }
}
 
// This code is contributed by ukasp.


Javascript




<script>
        // JavaScript Program to implement
        // the above approach
 
        // Function to check if there is
        // an element forming G.P. series
        // having common ratio k
        function checkArray(arr, N, k) {
 
            // If size of array is less than
            // three then return -1
            if (N < 3)
                return -1;
 
            // Initialize the variables
            let i, Sum = 0, temp = 0;
 
            // Calculate total sum of array
            for (i = 0; i < N; i++)
                Sum += arr[i];
 
            let R = (k * k + k + 1);
 
            if (Sum % R != 0)
                return 0;
 
            // Calculate Middle element of G.P. series
            let Mid = k * (Sum / R);
 
            // Iterate over the range
            for (i = 1; i < N - 1; i++) {
 
                // Store the first element of G.P.
                // series in the variable temp
                temp += arr[i - 1];
 
                if (arr[i] == Mid) {
 
                    // Return position of middle element
                    // of the G.P. series if the first
                    // element is in G.P. of common ratio k
                    if (temp == Mid / k)
                        return i + 1;
 
                    // Else return 0
                    else
                        return 0;
                }
            }
 
            // if middle element is not found in arr[]
            return 0;
        }
 
        // Driver Code
 
        // Given array
        let arr = [5, 1, 4, 20, 6, 15, 9, 10];
        let N = arr.length;
        let K = 2;
        document.write(checkArray(arr, N, K) + "<br>");
 
// This code is contributed by Potta Lokesh
    </script>


Output

4

Time Complexity: O(N)
Auxiliary Space: O(1)


My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!