Print all paths from a given source to a destination
Given a directed graph, a source vertex ‘s’ and a destination vertex ‘d’, print all paths from given ‘s’ to ‘d’.
Consider the following directed graph. Let the s be 2 and d be 3. There are 3 different paths from 2 to 3.
Approach:
- The idea is to do Depth First Traversal of a given directed graph.
- Start the DFS traversal from the source.
- Keep storing the visited vertices in an array or HashMap say ‘path[]’.
- If the destination vertex is reached, print the contents of path[].
- The important thing is to mark current vertices in the path[] as visited also so that the traversal doesn’t go in a cycle.
Following is the implementation of the above idea.
C++14
// C++ program to print all paths // from a source to destination. #include <iostream> #include <list> using namespace std; // A directed graph using // adjacency list representation class Graph { int V; // No. of vertices in graph list< int >* adj; // Pointer to an array containing // adjacency lists // A recursive function used by printAllPaths() void printAllPathsUtil( int , int , bool [], int [], int &); public : Graph( int V); // Constructor void addEdge( int u, int v); void printAllPaths( int s, int d); }; Graph::Graph( int V) { this ->V = V; adj = new list< int >[V]; } void Graph::addEdge( int u, int v) { adj[u].push_back(v); // Add v to u’s list. } // Prints all paths from 's' to 'd' void Graph::printAllPaths( int s, int d) { // Mark all the vertices as not visited bool * visited = new bool [V]; // Create an array to store paths int * path = new int [V]; int path_index = 0; // Initialize path[] as empty // Initialize all vertices as not visited for ( int i = 0; i < V; i++) visited[i] = false ; // Call the recursive helper function to print all paths printAllPathsUtil(s, d, visited, path, path_index); } // A recursive function to print all paths from 'u' to 'd'. // visited[] keeps track of vertices in current path. // path[] stores actual vertices and path_index is current // index in path[] void Graph::printAllPathsUtil( int u, int d, bool visited[], int path[], int & path_index) { // Mark the current node and store it in path[] visited[u] = true ; path[path_index] = u; path_index++; // If current vertex is same as destination, then print // current path[] if (u == d) { for ( int i = 0; i < path_index; i++) cout << path[i] << " " ; cout << endl; } else // If current vertex is not destination { // Recur for all the vertices adjacent to current // vertex list< int >::iterator i; for (i = adj[u].begin(); i != adj[u].end(); ++i) if (!visited[*i]) printAllPathsUtil(*i, d, visited, path, path_index); } // Remove current vertex from path[] and mark it as // unvisited path_index--; visited[u] = false ; } // Driver program int main() { // Create a graph given in the above diagram Graph g(4); g.addEdge(0, 1); g.addEdge(0, 2); g.addEdge(0, 3); g.addEdge(2, 0); g.addEdge(2, 1); g.addEdge(1, 3); int s = 2, d = 3; cout << "Following are all different paths from " << s << " to " << d << endl; g.printAllPaths(s, d); return 0; } |
Java
// JAVA program to print all // paths from a source to // destination. import java.util.ArrayList; import java.util.List; // A directed graph using // adjacency list representation public class Graph { // No. of vertices in graph private int v; // adjacency list private ArrayList<Integer>[] adjList; // Constructor public Graph( int vertices) { // initialise vertex count this .v = vertices; // initialise adjacency list initAdjList(); } // utility method to initialise // adjacency list @SuppressWarnings ( "unchecked" ) private void initAdjList() { adjList = new ArrayList[v]; for ( int i = 0 ; i < v; i++) { adjList[i] = new ArrayList<>(); } } // add edge from u to v public void addEdge( int u, int v) { // Add v to u's list. adjList[u].add(v); } // Prints all paths from // 's' to 'd' public void printAllPaths( int s, int d) { boolean [] isVisited = new boolean [v]; ArrayList<Integer> pathList = new ArrayList<>(); // add source to path[] pathList.add(s); // Call recursive utility printAllPathsUtil(s, d, isVisited, pathList); } // A recursive function to print // all paths from 'u' to 'd'. // isVisited[] keeps track of // vertices in current path. // localPathList<> stores actual // vertices in the current path private void printAllPathsUtil(Integer u, Integer d, boolean [] isVisited, List<Integer> localPathList) { if (u.equals(d)) { System.out.println(localPathList); // if match found then no need to traverse more till depth return ; } // Mark the current node isVisited[u] = true ; // Recur for all the vertices // adjacent to current vertex for (Integer i : adjList[u]) { if (!isVisited[i]) { // store current node // in path[] localPathList.add(i); printAllPathsUtil(i, d, isVisited, localPathList); // remove current node // in path[] localPathList.remove(i); } } // Mark the current node isVisited[u] = false ; } // Driver program public static void main(String[] args) { // Create a sample graph Graph g = new Graph( 4 ); g.addEdge( 0 , 1 ); g.addEdge( 0 , 2 ); g.addEdge( 0 , 3 ); g.addEdge( 2 , 0 ); g.addEdge( 2 , 1 ); g.addEdge( 1 , 3 ); // arbitrary source int s = 2 ; // arbitrary destination int d = 3 ; System.out.println( "Following are all different paths from " + s + " to " + d); g.printAllPaths(s, d); } } // This code is contributed by Himanshu Shekhar. |
Python3
# Python program to print all paths from a source to destination. from collections import defaultdict # This class represents a directed graph # using adjacency list representation class Graph: def __init__( self , vertices): # No. of vertices self .V = vertices # default dictionary to store graph self .graph = defaultdict( list ) # function to add an edge to graph def addEdge( self , u, v): self .graph[u].append(v) '''A recursive function to print all paths from 'u' to 'd'. visited[] keeps track of vertices in current path. path[] stores actual vertices and path_index is current index in path[]''' def printAllPathsUtil( self , u, d, visited, path): # Mark the current node as visited and store in path visited[u] = True path.append(u) # If current vertex is same as destination, then print # current path[] if u = = d: print (path) else : # If current vertex is not destination # Recur for all the vertices adjacent to this vertex for i in self .graph[u]: if visited[i] = = False : self .printAllPathsUtil(i, d, visited, path) # Remove current vertex from path[] and mark it as unvisited path.pop() visited[u] = False # Prints all paths from 's' to 'd' def printAllPaths( self , s, d): # Mark all the vertices as not visited visited = [ False ] * ( self .V) # Create an array to store paths path = [] # Call the recursive helper function to print all paths self .printAllPathsUtil(s, d, visited, path) # Create a graph given in the above diagram g = Graph( 4 ) g.addEdge( 0 , 1 ) g.addEdge( 0 , 2 ) g.addEdge( 0 , 3 ) g.addEdge( 2 , 0 ) g.addEdge( 2 , 1 ) g.addEdge( 1 , 3 ) s = 2 ; d = 3 print ( "Following are all different paths from % d to % d :" % (s, d)) g.printAllPaths(s, d) # This code is contributed by Neelam Yadav |
C#
// C# program to print all // paths from a source to // destination. using System; using System.Collections.Generic; // A directed graph using // adjacency list representation public class Graph { // No. of vertices in graph private int v; // adjacency list private List< int >[] adjList; // Constructor public Graph( int vertices) { // initialise vertex count this .v = vertices; // initialise adjacency list initAdjList(); } // utility method to initialise // adjacency list private void initAdjList() { adjList = new List< int >[v]; for ( int i = 0; i < v; i++) { adjList[i] = new List< int >(); } } // add edge from u to v public void addEdge( int u, int v) { // Add v to u's list. adjList[u].Add(v); } // Prints all paths from // 's' to 'd' public void printAllPaths( int s, int d) { bool [] isVisited = new bool [v]; List< int > pathList = new List< int >(); // add source to path[] pathList.Add(s); // Call recursive utility printAllPathsUtil(s, d, isVisited, pathList); } // A recursive function to print // all paths from 'u' to 'd'. // isVisited[] keeps track of // vertices in current path. // localPathList<> stores actual // vertices in the current path private void printAllPathsUtil( int u, int d, bool [] isVisited, List< int > localPathList) { if (u.Equals(d)) { Console.WriteLine( string .Join( " " , localPathList)); // if match found then no need // to traverse more till depth return ; } // Mark the current node isVisited[u] = true ; // Recur for all the vertices // adjacent to current vertex foreach ( int i in adjList[u]) { if (!isVisited[i]) { // store current node // in path[] localPathList.Add(i); printAllPathsUtil(i, d, isVisited, localPathList); // remove current node // in path[] localPathList.Remove(i); } } // Mark the current node isVisited[u] = false ; } // Driver code public static void Main(String[] args) { // Create a sample graph Graph g = new Graph(4); g.addEdge(0, 1); g.addEdge(0, 2); g.addEdge(0, 3); g.addEdge(2, 0); g.addEdge(2, 1); g.addEdge(1, 3); // arbitrary source int s = 2; // arbitrary destination int d = 3; Console.WriteLine( "Following are all different" + " paths from " + s + " to " + d); g.printAllPaths(s, d); } } // This code contributed by Rajput-Ji |
Javascript
<script> // JavaScript program to print all // paths from a source to // destination. let v; let adjList; // A directed graph using // adjacency list representation function Graph(vertices) { // initialise vertex count v = vertices; // initialise adjacency list initAdjList(); } // utility method to initialise // adjacency list function initAdjList() { adjList = new Array(v); for (let i = 0; i < v; i++) { adjList[i] = []; } } // add edge from u to v function addEdge(u,v) { // Add v to u's list. adjList[u].push(v); } // Prints all paths from // 's' to 'd' function printAllPaths(s,d) { let isVisited = new Array(v); for (let i=0;i<v;i++) isVisited[i]= false ; let pathList = []; // add source to path[] pathList.push(s); // Call recursive utility printAllPathsUtil(s, d, isVisited, pathList); } // A recursive function to print // all paths from 'u' to 'd'. // isVisited[] keeps track of // vertices in current path. // localPathList<> stores actual // vertices in the current path function printAllPathsUtil(u,d,isVisited,localPathList) { if (u == (d)) { document.write(localPathList+ "<br>" ); // if match found then no need to // traverse more till depth return ; } // Mark the current node isVisited[u] = true ; // Recur for all the vertices // adjacent to current vertex for (let i=0;i< adjList[u].length;i++) { if (!isVisited[adjList[u][i]]) { // store current node // in path[] localPathList.push(adjList[u][i]); printAllPathsUtil(adjList[u][i], d, isVisited, localPathList); // remove current node // in path[] localPathList.splice(localPathList.indexOf (adjList[u][i]),1); } } // Mark the current node isVisited[u] = false ; } // Driver program // Create a sample graph Graph(4); addEdge(0, 1); addEdge(0, 2); addEdge(0, 3); addEdge(2, 0); addEdge(2, 1); addEdge(1, 3); // arbitrary source let s = 2; // arbitrary destination let d = 3; document.write( "Following are all different paths from " + s + " to " + d+ "<Br>" ); printAllPaths(s, d); // This code is contributed by avanitrachhadiya2155 </script> |
Output
Following are all different paths from 2 to 3 2 0 1 3 2 0 3 2 1 3
Complexity Analysis:
- Time Complexity: O(2^V), The time complexity is exponential. Given a source and destination, the source and destination nodes are going to be in every path. Depending upon edges, taking the worst case where every node has a directed edge to every other node, there can be at max 2^V different paths possible in the directed graph from a given source to destination.
- Auxiliary space: O(2^V), To store the paths 2^V space is needed.
This article is contributed by Shivam Gupta. Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
Please Login to comment...