Skip to content
Related Articles

Related Articles

Find original array from given array which is obtained after P prefix reversals | Set-2

View Discussion
Improve Article
Save Article
Like Article
  • Last Updated : 06 Jan, 2022

Given an array arr[] of size N ana an integer P, the task is to find the original array from the array obtained by P prefix reversals where in ith reversal the prefix of size i of the array containing indices in range [0, i-1] was reversed.

Note: P is less than or equal to N

Examples:

Input: arr[] = {4, 2, 1, 3, 5, 6}, P = 4.
Output:  1 2 3 4 5 6
Explanation: {1, 2, 3, 4, 5, 6} on prefix reversal P = 1 converts to {1, 2, 3, 4, 5, 6}.
{1, 2, 3, 4, 5, 6} on prefix reversal P = 2 converts to {2, 1, 3, 4, 5, 6}.
{2, 1, 3, 4, 5, 6} on prefix reversal P = 3 converts to {3, 1, 2, 4, 5, 6}
{3, 1, 2, 4, 5, 6} on prefix reversal P = 4 converts to  {4, 2, 1, 3, 5, 6} 
So answer is {1, 2, 3, 4, 5, 6}

Input: arr[] = {10, 9, 8, 3, 5, 6}, P = 3
Output: 9 8 10 3 5 6

 

Approach: The naive approach and two pointer approach is discussed in the Set-1 of this problem.

Mathematical observation based Approach: This approach is based on the mathematical observation shown below.

Consider the original array as arr[] and the reversed array after the P prefix reversals is rev[].
Now for an element in index i (0 based indexing):

  • This element’s position is not affected for the first i moves (As it is the (i+1)th element of the array arr[]).
  • So its position is affected (P-i) times in total.
  • Now at the first move [i.e. the (i+1)th move ]in which it participates it becomes the first element of the modified array i.e. its index becomes 0. So movement towards left is (i – 0) = i and now it is the first element of the array.
  • In the next move it becomes the last element of the (i+2) sized prefix and its index becomes (i+1) having a shift of (i+1) towards right.
  • This shift keeps on happening for each alternate steps as it goes on becoming the 2nd element of prefix, then 2nd last of prefix and so on.

So from this it can be clearly seen that an element at ith index moves floor((P-i)/2) times towards right and ceil((P-i)/2) towards left as it starts alternating position with a left shift operation. Say floor((P-i)/2) = x and ceil((P-i)/2) = y

  • If (P-i) = even, x = y
  • If (P-i) = odd, y = x + 1

So the final position of an element at ith index of arr[] in the array rev[] can be calculated as: pos = i + [x*(i+1) – y*i]

  • If (P-i) = even: pos = i + [x*i + x – x*i] = i+x
  • If (P-i) = odd: pos = i + [x*i + x – (x + 1)*i] = x

Note: Only the indices in range [0, P-1] is obtained by this formula, the other elements remain as it is.

Follow the steps mentioned below to implement this approach:

  • Initialize an array original[] of size N.
  • Start iterating in a loop from i = 0 to N to fill the array original[].
  • For each i in range [0, P-1] find the position of the ith element of original array in the given array by using the above formula.
  • Fill the remaining elements as it is.
  • Print the array original[].

Below is the implementation of the above approach.

C++




// C++ code to implement above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the original array
void findOriginal(int arr[], int N, int P)
{
    int i, x;
    int original[N];
     
    // Loop to fill the original array
    for (i = 0; i < P; i++) {
        x = (P - i) / 2;
         
        // If (P-i) is odd
        if ((P - i) % 2)
            original[i] = arr[x];
         
        // If (P-i) is even
        else
            original[i] = arr[i + x];
    }
    for (i = P; i < N; i++)
        original[i] = arr[i];
 
    // Print the original array
    for (i = 0; i < N; i++)
        cout << original[i] << " ";
}
 
// Driver code
int main()
{
    int N = 6, P = 4;
    int arr[] = { 4, 2, 1, 3, 5, 6 };
     
    // Function call to get original array
    findOriginal(arr, N, P);
     
    return 0;
}


Java




// Java code to implement above approach
class GFG {
 
  // Function to find the original array
  static void findOriginal(int arr[], int N, int P) {
    int i, x;
    int[] original = new int[N];
 
    // Loop to fill the original array
    for (i = 0; i < P; i++) {
      x = (P - i) / 2;
 
      // If (P-i) is odd
      if ((P - i) % 2 > 0)
        original[i] = arr[x];
 
      // If (P-i) is even
      else
        original[i] = arr[i + x];
    }
    for (i = P; i < N; i++)
      original[i] = arr[i];
 
    // Print the original array
    for (i = 0; i < N; i++)
      System.out.print(original[i] + " ");
  }
 
  // Driver code
  public static void main(String args[])
  {
    int N = 6, P = 4;
    int arr[] = { 4, 2, 1, 3, 5, 6 };
 
    // Function call to get original array
    findOriginal(arr, N, P);
  }
}
 
// This code is contributed by saurabh_jaiswal.


Python3




# python code to implement above approach
 
# Function to find the original array
def findOriginal(arr, N, P):
 
    original = [0 for _ in range(N)]
 
    # Loop to fill the original array
    for i in range(0, P):
        x = (P - i) // 2
 
        # If (P-i) is odd
        if ((P - i) % 2):
            original[i] = arr[x]
 
        # If (P-i) is even
        else:
            original[i] = arr[i + x]
 
    for i in range(P, N):
        original[i] = arr[i]
 
    # Print the original array
    for i in range(0, N):
        print(original[i], end=" ")
 
# Driver code
if __name__ == "__main__":
 
    N = 6
    P = 4
    arr = [4, 2, 1, 3, 5, 6]
 
    # Function call to get original array
    findOriginal(arr, N, P)
 
    # This code is contributed by rakeshsahni


Javascript




<script>
       // JavaScript code for the above approach
 
       // Function to find the original array
       function findOriginal(arr, N, P) {
           let i, x;
           let original = new Array(N);
 
           // Loop to fill the original array
           for (i = 0; i < P; i++) {
               x = Math.floor((P - i) / 2);
 
               // If (P-i) is odd
               if ((P - i) % 2)
                   original[i] = arr[x];
 
               // If (P-i) is even
               else
                   original[i] = arr[i + x];
           }
           for (i = P; i < N; i++)
               original[i] = arr[i];
 
           // Print the original array
           for (i = 0; i < N; i++)
               document.write(original[i] + " ");
       }
 
       // Driver code
       let N = 6, P = 4;
       let arr = [4, 2, 1, 3, 5, 6];
 
       // Function call to get original array
       findOriginal(arr, N, P);
 
 // This code is contributed by Potta Lokesh
   </script>


C#




// C# program for the above approach
using System;
class GFG
{
  // Function to find the original array
  static void findOriginal(int []arr, int N, int P) {
    int i, x;
    int []original = new int[N];
 
    // Loop to fill the original array
    for (i = 0; i < P; i++) {
      x = (P - i) / 2;
 
      // If (P-i) is odd
      if ((P - i) % 2 > 0)
        original[i] = arr[x];
 
      // If (P-i) is even
      else
        original[i] = arr[i + x];
    }
    for (i = P; i < N; i++)
      original[i] = arr[i];
 
    // Print the original array
    for (i = 0; i < N; i++)
      Console.Write(original[i] + " ");
  }
 
  // Driver code
  public static void Main()
  {
    int N = 6, P = 4;
    int []arr = { 4, 2, 1, 3, 5, 6 };
 
    // Function call to get original array
    findOriginal(arr, N, P);
  }
}
// This code is contributed by Samim Hossain Mondal.


 
 

Output

1 2 3 4 5 6 

Time Complexity: O(N)
Auxiliary Space: O(N) 


My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!