Skip to content
Related Articles
Get the best out of our app
GFG App
Open App
geeksforgeeks
Browser
Continue

Related Articles

Find Nth term of the series 5, 10, 20, 40…

Improve Article
Save Article
Like Article
Improve Article
Save Article
Like Article

Given a positive integer N, the task is to find the Nth term of the series

5, 10, 20, 40….till N terms

Examples:

Input: N = 5
Output: 80

Input: N = 3
Output: 20

 

Approach: 

1st term = 5 * (2 ^ (1 – 1))  = 5

2nd term = 5 * (2 ^ (2 – 1)) = 10

3rd term = 5 * (2 ^ (3 – 1)) = 20

4th term = 5 * (2 ^ (4 – 1)) = 40

.

.

Nth term = 5 * (2 ^ (N – 1))

The Nth term of the given series can be generalized as-

TN = (a * (r ^ (N – 1))

The following steps can be followed to derive the formula-

The series 5, 10, 20, 40….till N terms 

is in G.P. with 

first term a = 5

common ratio r = 2 because each term is double the one before it.

The Nth term of a G.P. is

TN = (a * (r ^ (N – 1))

Illustration:

Input: N = 5
Output: 80
Explanation:
TN = (a * (r ^ (N – 1))
     = (5 * (2 ^ (5 – 1))
     = (5 * 16)
     = 80

Below is the implementation of the above approach-

C++




// C++ program to implement
// the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to calculate nth term
int nTerm(int a, int r, int n)
{
    return a * pow(r, n - 1);
}
 
// Driver code
int main()
{
    // Value of N
    int N = 5;
 
    // First term of the series
    int a = 5;
 
    // Common ratio
    int r = 2;
 
    cout << nTerm(a, r, N);
    return 0;
}


C




// C program to implement
// the above approach
#include <math.h>
#include <stdio.h>
 
// Function to calculate nth term
int nTerm(int a, int r, int n)
{
    return a * pow(r, n - 1);
}
 
// Driver code
int main()
{
    // Value of N
    int N = 5;
 
    // First term
    int a = 5;
 
    // Common ratio
    int r = 2;
 
    printf("%d", nTerm(a, r, n));
    return 0;
}


Java




// Java program to implement
// the above approach
import java.io.*;
 
class GFG {
    // Driver code
    public static void main(String[] args)
    {
        // Value of N
        int N = 5;
 
        // First term
        int a = 5;
 
        // Common ratio
        int r = 2;
        System.out.println(nTerm(a, r, N));
    }
 
    // Function to calculate nth term
    public static int nTerm(int a, int r, int n)
    {
        return a * ((int)Math.pow(r, n - 1));
    }
}


Python3




# python3 program to implement
# the above approach
 
# Function to calculate nth term
def nTerm(a, r, n):
 
    return a * pow(r, n - 1)
 
# Driver code
if __name__ == "__main__":
 
    # Value of N
    N = 5
 
    # First term of the series
    a = 5
 
    # Common ratio
    r = 2
 
    print(nTerm(a, r, N))
 
# This code is contributed by rakeshsahni


C#




using System;
 
public class GFG
{
   
    // Function to calculate nth term
    public static int nTerm(int a, int r, int n)
    {
        return a * ((int)Math.Pow(r, n - 1));
    }
    static public void Main()
    {
 
        // Code
        // Value of N
        int N = 5;
 
        // First term
        int a = 5;
 
        // Common ratio
        int r = 2;
        Console.Write(nTerm(a, r, N));
    }
}
 
// This code is contributed by Potta Lokesh


Javascript




<script>
      // JavaScript code for the above approach
 
      // Function to calculate nth term
      function nTerm(a, r, n) {
          return a * Math.pow(r, n - 1);
      }
 
      // Driver code
 
      // Value of N
      let N = 5;
 
      // First term of the series
      let a = 5;
 
      // Common ratio
      let r = 2;
 
      document.write(nTerm(a, r, N));
 
 
     // This code is contributed by Potta Lokesh
  </script>


Output

80

Time complexity: O(logrn) because it is using inbuilt pow function 

Auxiliary Space: O(1) // since no extra array is used so the space taken by the algorithm is constant


My Personal Notes arrow_drop_up
Last Updated : 25 Apr, 2023
Like Article
Save Article
Similar Reads
Related Tutorials