 GFG App
Open App Browser
Continue

# Find Nth term of the series 0, 6, 24, 60, 120…

Given a positive integer N, the task is to find the Nth term of the series

0, 6, 24, 60, 120…till N terms

Examples:

Input: N = 5
Output: 120

Input: N = 10
Output: 990

Approach:

From the given series, find the formula for Nth term-

1st term = 1 ^ 3 – 1 = 0

2nd term = 2 ^ 3 – 2 = 6

3rd term = 3 ^ 3 – 3 = 24

4th term = 4 ^ 3 – 4 = 60

.

.

Nth term = N ^ 3 – N

The Nth term of the given series can be generalized as-

TN = N ^ 3 – N

Illustration:

Input: N = 10
Output: 990
Explanation:
TN = N ^ 3 – N
= 10 ^ 3 – 10
= 1000 – 10
= 990

Below is the implementation of the above approach-

## C++

 `// C++ program to implement` `// the above approach` `#include ` `using` `namespace` `std;`   `// Function to return` `// Nth term of the series` `int` `nth(``int` `n)` `{` `    ``return` `n * n * n - n;` `}`   `// Driver code` `int` `main()` `{` `    ``int` `N = 5;` `    ``cout << nth(N) << endl;` `    ``return` `0;` `}`

## C

 `// C program to implement` `// the above approach` `#include `   `// Function to return` `// Nth term of the series` `int` `nth(``int` `n)` `{` `    ``return` `n * n * n - n;` `}`   `// Driver code` `int` `main()` `{` `    ``// Value of N` `    ``int` `N = 5;` `    ``printf``(``"%d"``, nth(N));` `    ``return` `0;` `}`

## Java

 `// Java program to implement` `// the above approach` `import` `java.io.*;`   `class` `GFG {` `    ``// Driver code` `    ``public` `static` `void` `main(String[] args)` `    ``{` `        ``int` `N = ``5``;` `        ``System.out.println(nth(N));` `    ``}` `    ``// Function to return` `    ``// Nth term of the series` `    ``public` `static` `int` `nth(``int` `n)` `    ``{` `        ``return` `n * n * n - n;` `    ``}` `}`

## Python

 `# Python program to implement` `# the above approach`   `# Function to return` `# Nth term of the series` `def` `nth(n):` `    ``return` `n ``*` `n ``*` `n ``-` `n`   `# Driver code` `N ``=` `5` `print``(nth(N))`   `# This code is contributed by Samim Hossain Mondal.`

## C#

 `using` `System;`   `public` `class` `GFG` `{`   `  ``// Function to return` `  ``// Nth term of the series` `  ``public` `static` `int` `nth(``int` `n) { ``return` `n * n * n - n; }`   `  ``// Driver code` `  ``static` `public` `void` `Main()` `  ``{`   `    ``// Code` `    ``int` `N = 5;` `    ``Console.Write(nth(N));` `  ``}` `}`   `// This code is contributed by Potta Lokesh`

## Javascript

 ``

Output

`120`

Time Complexity: O(1) // since no loop is used the algorithm takes up constant time to perform the operations
Auxiliary Space: O(1) // since no extra array is used so the space taken by the algorithm is constant

My Personal Notes arrow_drop_up