 GFG App
Open App Browser
Continue

# Find nth term of 0, 9, 24, 45, . . . .

Given a natural number N, the task is to find the Nth term of the series

0, 9, 24, 45, . . . .till N terms

Examples:

Input: N = 4
Output: 45

Input: N = 6
Output: 105

Approach:

From the given series, find the formula for Nth term-

1st term = 3 * 1 * 1 – 3 = 0

2nd term = 3 * 2 * 2 – 3 = 9

3rd term = 3 * 3 * 3 – 3 = 24

4th term = 3 * 4 * 4 – 3 = 45

.

.

Nth term = 3 * N * N – 3

The Nth term of the given series can be generalized as-

TN = 3 * N * N – 3

Illustration:

Input: N = 6
Output: 105
Explanation:
TN = 3 * N * N – 3
= 3 * 6 * 6 – 3
= 108 – 3
= 105

Below is the implementation of the above approach-

## C++

 `// C++ program to implement` `// the above approach` `#include ` `using` `namespace` `std;`   `// Function to return nth` `// term of the series` `int` `nth_Term(``int` `n)` `{` `    ``return` `3 * n * n - 3;` `}`   `// Driver code` `int` `main()` `{` `    ``// Value of N` `    ``int` `N = 6;`   `    ``// Invoke function to find` `    ``// Nth term` `    ``cout << nth_Term(N) << ` `            ``endl;` `    ``return` `0;` `}`

## Java

 `// Java program to implement` `// the above approach` `import` `java.util.*;` `public` `class` `GFG` `{` `  `  `  ``// Function to return nth` `  ``// term of the series` `  ``static` `int` `nth_Term(``int` `n)` `  ``{` `    ``return` `3` `* n * n - ``3``;` `  ``}`   `  ``// Driver code` `  ``public` `static` `void` `main(String args[])` `  ``{` `    `  `    ``// Value of N` `    ``int` `N = ``6``;`   `    ``// Invoke function to find` `    ``// Nth term` `    ``System.out.println(nth_Term(N));` `  ``}` `}`   `// This code is contributed by Samim Hossain Mondal.`

## Python3

 `# Python code for the above approach `   `# Function to return nth` `# term of the series` `def` `nth_Term(n):` `    ``return` `3` `*` `n ``*` `n ``-` `3``;`   `# Driver code`   `# Value of N` `N ``=` `6``;`   `# Invoke function to find` `# Nth term` `print``(nth_Term(N))`   `# This code is contributed by gfgking`

## C#

 `// C# program to implement` `// the above approach` `using` `System;` `class` `GFG` `{` `  `  `// Function to return nth` `// term of the series` `static` `int` `nth_Term(``int` `n)` `{` `    ``return` `3 * n * n - 3;` `}`   `// Driver code` `public` `static` `void` `Main()` `{` `    ``// Value of N` `    ``int` `N = 6;`   `    ``// Invoke function to find` `    ``// Nth term` `    ``Console.WriteLine(nth_Term(N));` `}` `}`   `// This code is contributed by Samim Hossain Mondal.`

## Javascript

 ``

Output

`105`

Time Complexity: O(1)

Auxiliary Space: O(1)

My Personal Notes arrow_drop_up