Find nth term of 0, 9, 24, 45, . . . .
Given a natural number N, the task is to find the Nth term of the series
0, 9, 24, 45, . . . .till N terms
Examples:
Input: N = 4
Output: 45Input: N = 6
Output: 105
Approach:
From the given series, find the formula for Nth term-
1st term = 3 * 1 * 1 – 3 = 0
2nd term = 3 * 2 * 2 – 3 = 9
3rd term = 3 * 3 * 3 – 3 = 24
4th term = 3 * 4 * 4 – 3 = 45
.
.
Nth term = 3 * N * N – 3
The Nth term of the given series can be generalized as-
TN = 3 * N * N – 3
Illustration:
Input: N = 6
Output: 105
Explanation:
TN = 3 * N * N – 3
= 3 * 6 * 6 – 3
= 108 – 3
= 105
Below is the implementation of the above approach-
C++
// C++ program to implement // the above approach #include <iostream> using namespace std; // Function to return nth // term of the series int nth_Term( int n) { return 3 * n * n - 3; } // Driver code int main() { // Value of N int N = 6; // Invoke function to find // Nth term cout << nth_Term(N) << endl; return 0; } |
Java
// Java program to implement // the above approach import java.util.*; public class GFG { // Function to return nth // term of the series static int nth_Term( int n) { return 3 * n * n - 3 ; } // Driver code public static void main(String args[]) { // Value of N int N = 6 ; // Invoke function to find // Nth term System.out.println(nth_Term(N)); } } // This code is contributed by Samim Hossain Mondal. |
Python3
# Python code for the above approach # Function to return nth # term of the series def nth_Term(n): return 3 * n * n - 3 ; # Driver code # Value of N N = 6 ; # Invoke function to find # Nth term print (nth_Term(N)) # This code is contributed by gfgking |
C#
// C# program to implement // the above approach using System; class GFG { // Function to return nth // term of the series static int nth_Term( int n) { return 3 * n * n - 3; } // Driver code public static void Main() { // Value of N int N = 6; // Invoke function to find // Nth term Console.WriteLine(nth_Term(N)); } } // This code is contributed by Samim Hossain Mondal. |
Javascript
<script> // JavaScript code for the above approach // Function to return nth // term of the series function nth_Term(n) { return 3 * n * n - 3; } // Driver code // Value of N let N = 6; // Invoke function to find // Nth term document.write(nth_Term(N) + '<br>' ) // This code is contributed by Potta Lokesh </script> |
Output
105
Time Complexity: O(1)
Auxiliary Space: O(1)
Please Login to comment...