# Program for N-th term of Geometric Progression series

• Difficulty Level : Easy
• Last Updated : 25 Feb, 2021

Given first term (a), common ratio (r) and a integer N of the Geometric Progression series, the task is to find Nth term of the series.
Examples :

```Input : a = 2 r = 2, N = 4
Output :
The 4th term of the series is : 16

Input : a = 2 r = 3, N = 5
Output :
The 5th term of the series is : 162```

Approach:

We know the Geometric Progression series is like = 2, 4, 8, 16, 32 …. …
In this series 2 is the stating term of the series .
Common ratio = 4 / 2 = 2 (ratio common in the series).
so we can write the series as :
t1 = a1
t2 = a1 * r(2-1)
t3 = a1 * r(3-1)
t4 = a1 * r(4-1)

tN = a1 * r(N-1)

To find the Nth term in the Geometric Progression series we use the simple formula .

`TN = a1 * r(N-1)`

## C++

 `// CPP Program to find nth term of ` `// geometric progression ` `#include ` ` `  `using` `namespace` `std; `   `int` `Nth_of_GP(``int` `a, ``int` `r, ``int` `N) ` `{ ` `    ``// using formula to find ` `    ``// the Nth term ` `    ``// TN = a1 * r(N-1) ` `    ``return``( a * (``int``)(``pow``(r, N - 1)) ); ` `    `  `} `   `// Driver code ` `int` `main() ` `{ ` `    ``// starting number ` `    ``int` `a = 2; ` `    `  `    ``// Common ratio ` `    ``int` `r = 3; ` `    `  `    ``// N th term to be find ` `    ``int` `N = 5; ` `    `  `    ``// Display the output ` `    ``cout << ``"The "``<< N <<``"th term of the series is : "` `        ``<< Nth_of_GP(a, r, N); `   `    ``return` `0; ` `} `

## Java

 `// java program to find nth term ` `// of geometric progression ` `import` `java.io.*; ` `import` `java.lang.*; `   `class` `GFG ` `{ ` `    ``public` `static` `int` `Nth_of_GP(``int` `a, ` `                                ``int` `r, ` `                                ``int` `N) ` `    ``{ ` `        ``// using formula to find the Nth ` `        ``// term TN = a1 * r(N-1) ` `        ``return` `( a * (``int``)(Math.pow(r, N - ``1``)) ); ` `    ``} `   `    ``// Driver code ` `    ``public` `static` `void` `main(String[] args) ` `    ``{ ` `        ``// starting number ` `        ``int` `a = ``2``; ` `        `  `        ``// Common ratio ` `        ``int` `r = ``3``; ` `        `  `        ``// N th term to be find ` `        ``int` `N = ``5``; `   `        ``// Display the output ` `        ``System.out.print(``"The "``+ N + ``"th term of the"` `+ ` `                ``" series is : "` `+ Nth_of_GP(a, r, N)); ` `    ``} ` `} `

## Python3

 `# Python3 Program to find nth ` `# term of geometric progression ` `import` `math `   `def` `Nth_of_GP(a, r, N): `   `    ``# Using formula to find the Nth ` `    ``# term TN = a1 * r(N-1) ` `    ``return``( a ``*` `(``int``)(math.``pow``(r, N ``-` `1``)) ) ` `    `  `# Driver code ` `a ``=` `2` `# Starting number ` `r ``=` `3` `# Common ratio ` `N ``=` `5` `# N th term to be find ` `    `  `print``(``"The"``, N, ``"th term of the series is :"``, ` `                            ``Nth_of_GP(a, r, N)) `     `# This code is contributed by Smitha Dinesh Semwal `

## C#

 `// C# program to find nth term ` `// of geometric progression ` `using` `System; `   `class` `GFG ` `{ ` `    `  `    ``public` `static` `int` `Nth_of_GP(``int` `a, ` `                                ``int` `r, ` `                                ``int` `N) ` `    ``{ ` `        `  `        ``// using formula to find the Nth ` `        ``// term TN = a1 * r(N-1) ` `        ``return` `( a * (``int``)(Math.Pow(r, N - 1)) ); ` `    ``} `   `    ``// Driver code ` `    ``public` `static` `void` `Main() ` `    ``{ ` `        ``// starting number ` `        ``int` `a = 2; ` `        `  `        ``// Common ratio ` `        ``int` `r = 3; ` `        `  `        ``// N th term to be find ` `        ``int` `N = 5; `   `        ``// Display the output ` `        ``Console.Write(``"The "``+ N + ``"th term of the"` `+ ` `            ``" series is : "` `+ Nth_of_GP(a, r, N)); ` `    ``} ` `} `   `// This code is contributed by vt_m `

## PHP

 ` `

## Javascript

 ``

Output :

`The 5th term of the series is : 162`

My Personal Notes arrow_drop_up
Recommended Articles
Page :