# Find N Arithmetic Means between A and B

• Difficulty Level : Medium
• Last Updated : 27 Aug, 2022

Given three integers A, B and N the task is to find N Arithmetic means between A and B. We basically need to insert N terms in an Arithmetic progression. where A and B are first and last terms. Examples:

```Input : A = 20 B = 32 N = 5
Output : 22 24 26 28 30
The Arithmetic progression series as
20 22 24 26 28 30 32

Input : A = 5  B = 35  N = 5
Output : 10 15 20 25 30```

Approach : Let A1, A2, A3, A4……An be N Arithmetic Means between two given numbers A and B . Then A, A1, A2 ….. An, B will be in Arithmetic Progression . Now B = (N+2)th term of the Arithmetic progression . So : Finding the (N+2)th term of the Arithmetic progression Series where d is the Common Difference B = A + (N + 2 – 1)d B – A = (N + 1)d So the Common Difference d is given by. d = (B – A) / (N + 1) So now we have the value of A and the value of the common difference(d), now we can find all the N Arithmetic Means between A and B.

## C++

 `// C++ program to find n arithmetic ` `// means between A and B` `#include ` `using` `namespace` `std;` ` `  `// Prints N arithmetic means between` `// A and B.` `void` `printAMeans(``int` `A, ``int` `B, ``int` `N)` `{` `    ``// calculate common difference(d)` `    ``float` `d = (``float``)(B - A) / (N + 1);` `     `  `    ``// for finding N the arithmetic ` `    ``// mean between A and B` `    ``for` `(``int` `i = 1; i <= N; i++) ` `        ``cout << (A + i * d) <<``" "``;    ` `}` ` `  `// Driver code to test above ` `int` `main()` `{` `    ``int` `A = 20, B = 32, N = 5;` `    ``printAMeans(A, B, N);    ` `    ``return` `0;` `}`

## Java

 `// java program to illustrate` `// n arithmetic mean between ` `// A and B` `import` `java.io.*;` `import` `java.lang.*;` `import` `java.util.*;` ` `  `public` `class` `GFG {` ` `  `    ``// insert function for calculating the means` `    ``static` `void` `printAMeans(``int` `A, ``int` `B, ``int` `N)` `    ``{       ` `        ``// Finding the value of d Common difference` `        ``float` `d = (``float``)(B - A) / (N + ``1``);` `                            `  `        ``// for finding N the Arithmetic ` `        ``// mean between A and B` `        ``for` `(``int` `i = ``1``; i <= N; i++) ` `          ``System.out.print((A + i * d) + ``" "``);` `         `  `    ``}` ` `  `    ``// Driver code` `    ``public` `static` `void` `main(String args[])` `    ``{` `        ``int` `A = ``20``, B = ``32``, N = ``5``;` `        ``printAMeans(A, B, N);` `    ``}` `}`

## Python3

 `# Python3 program to find n arithmetic` `# means between A and B`   `# Prints N arithmetic means ` `# between A and B.` `def` `printAMeans(A, B, N):`   `    ``# Calculate common difference(d)` `    ``d ``=` `(B ``-` `A) ``/` `(N ``+` `1``)` `    `  `    ``# For finding N the arithmetic ` `    ``# mean between A and B` `    ``for` `i ``in` `range``(``1``, N ``+` `1``): ` `        ``print``(``int``(A ``+` `i ``*` `d), end ``=` `" "``) `   `# Driver code` `A ``=` `20``; B ``=` `32``; N ``=` `5` `printAMeans(A, B, N) `   `# This code is contributed by Smitha Dinesh Semwal`

## C#

 `// C# program to illustrate ` `// n arithmetic mean between  ` `// A and B ` `using` `System; ` `  `  `public` `class` `GFG { ` `  `  `    ``// insert function for calculating the means ` `    ``static` `void` `printAMeans(``int` `A, ``int` `B, ``int` `N) ` `    ``{      ` `        ``// Finding the value of d Common difference ` `        ``float` `d = (``float``)(B - A) / (N + 1); ` `                              `  `        ``// for finding N the Arithmetic  ` `        ``// mean between A and B ` `        ``for` `(``int` `i = 1; i <= N; i++)  ` `        ``Console.Write((A + i * d) + ``" "``); ` `          `  `    ``} ` `  `  `    ``// Driver code ` `    ``public` `static` `void` `Main() ` `    ``{ ` `        ``int` `A = 20, B = 32, N = 5; ` `        ``printAMeans(A, B, N); ` `    ``} ` `} ` `// Contributed by vt_m `

## PHP

 ``

## Javascript

 ``

Output:

`22 24 26 28 30`

Time Complexity : O(N) ,where N is the number of terms

Space Complexity : O(1), since no extra space has been taken.

My Personal Notes arrow_drop_up
Related Articles