Find missing elements from an Array with duplicates
Given an array arr[] of size N having integers in the range [1, N] with some of the elements missing. The task is to find the missing elements.
Note: There can be duplicates in the array.
Examples:
Input: arr[] = {1, 3, 3, 3, 5}, N = 5
Output: 2 4
Explanation: The numbers missing from the list are 2 and 4
All other elements in the range [1, 5] are present in the array.Input: arr[] = {1, 2, 3, 4, 4, 7, 7}, N = 7
Output: 5 6
Approach 1(Negating visited elements): The idea to solve the problem is as follows
In the given range [1, N] there should be an element corresponding to each index. So mark the visited indices by multiplying that element with -1. If an element is missing then its index will have a positive element. Otherwise, it will have a negative element.
Follow the below illustration:
Illustration:
Consider arr[] = {1, 3, ,3, 3, 5}
Here for illustration, we will use 1 based indexingFor i = 1:
=> arr[i] = 1. So mark arr[1] visited.
=> arr[1] = -1*arr[1] = -1*1 = -1
=> arr[] = {-1, 3, 3, 3, 5}For i = 2:
=> arr[i] = 3. So mark arr[3] visited.
=> arr[3] = -1*arr[3] = -1*3 = -3
=> arr[] = {-1, 3, -3, 3, 5}For i = 3:
=> arr[i] = -3. So we should move to absolute value of -3 i.e. 3
=> arr[3] is already visited. Skip to next index
=> arr[] = {-1, 3, -3, 3, 5}For i = 4:
=> arr[i] = 3. So mark arr[3] visited.
=> arr[3] is already visited. Skip to next index
=> arr[] = {-1, 3, -3, 3, 5}For i = 5:
=> arr[i] = 5. So mark arr[5] visited.
=> arr[5] = -1*arr[5] = -1*5 = -5
=> arr[] = {-1, 3, -3, 3, -5}Again traverse the array. See that arr[2] and arr[4] are not visited.
So the missing elements are {2, 4}.
Follow the below steps to implement the idea:
- Traverse the array from i = 0 to N-1:
- If the element is negative take the positive value (say x = abs(arr[i])).
- if the value at (x-1)th index is not visited i.e., it is still positive then multiply that element with -1.
- Traverse the array again from i = 0 to N-1:
- If the element is not visited, i.e., has a positive value, push (i+1) to the resultant array.
- Return the resultant array that contains the missing elements.
Below is the implementation of the above approach:
C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; // Function to find the missing elements vector< int > missing_elements(vector< int > vec) { // Vector to store the list // of missing elements vector< int > mis; // For every given element for ( int i = 0; i < vec.size(); i++) { // Find its index int temp = abs (vec[i]) - 1; // Update the element at the found index vec[temp] = vec[temp] > 0 ? -vec[temp] : vec[temp]; } for ( int i = 0; i < vec.size(); i++) // Current element was not present // in the original vector if (vec[i] > 0) mis.push_back(i + 1); return mis; } // Driver code int main() { vector< int > vec = { 3, 3, 3, 5, 1 }; // Vector to store the returned // list of missing elements vector< int > miss_ele = missing_elements(vec); // Print the list of elements for ( int i = 0; i < miss_ele.size(); i++) cout << miss_ele[i] << " " ; return 0; } // This code is contributed by Aditya Kumar (adityakumar129) |
C
// C implementation of the approach #include <stdio.h> #include <stdlib.h> // Function to find the missing elements void missing_elements( int vec[], int n) { int mis[n]; for ( int i = 0; i < n; i++) mis[i] = -1; // For every given element for ( int i = 0; i < n; i++) { // Find its index int temp = abs (vec[i]) - 1; // Update the element at the found index vec[temp] = vec[temp] > 0 ? -vec[temp] : vec[temp]; } // Current element was not present // in the original vector for ( int i = 0; i < n; i++) if (vec[i] > 0) mis[i] = (i + 1); int miss_ele_size = sizeof (mis) / sizeof (mis[0]); for ( int i = 0; i < miss_ele_size; i++) { if (mis[i] != -1) printf ( "%d " , mis[i]); } } // Driver code int main() { int vec[] = { 3, 3, 3, 5, 1 }; int vec_size = sizeof (vec) / sizeof (vec[0]); missing_elements(vec, vec_size); return 0; } // This code is contributed by Aditya Kumar (adityakumar129) |
Java
// Java implementation of the above approach import java.util.*; class GFG { // Function to find the missing elements static List<Integer> missing_elements(List<Integer> vec) { // Vector to store the list // of missing elements List<Integer> mis = new ArrayList<Integer>(); // For every given element for ( int i = 0 ; i < vec.size(); i++) { // Find its index int temp = Math.abs(( int )vec.get(i)) - 1 ; // Update the element at the found index if (( int )vec.get(temp) > 0 ) vec.set(temp, -( int )vec.get(temp)); else vec.set(temp, vec.get(temp)); } for ( int i = 0 ; i < vec.size(); i++) { // Current element was not present // in the original vector if (( int )vec.get(i) > 0 ) mis.add(i + 1 ); } return mis; } // Driver code public static void main(String args[]) { List<Integer> vec = new ArrayList<Integer>(); vec.add( 3 ); vec.add( 3 ); vec.add( 3 ); vec.add( 5 ); vec.add( 1 ); // Vector to store the returned // list of missing elements List<Integer> miss_ele = missing_elements(vec); // Print the list of elements for ( int i = 0 ; i < miss_ele.size(); i++) System.out.print(miss_ele.get(i) + " " ); } } // This code is contributed by Aditya Kumar (adityakumar129) |
Python3
# Python3 implementation of the approach # Function to find the missing elements def missing_elements(vec): # Vector to store the list # of missing elements mis = [] # For every given element for i in range ( len (vec)): # Find its index temp = abs (vec[i]) - 1 # Update the element at the found index if vec[temp] > 0 : vec[temp] = - vec[temp] for i in range ( len (vec)): # Current element was not present # in the original vector if (vec[i] > 0 ): mis.append(i + 1 ) return mis # Driver code if __name__ = = '__main__' : vec = [ 3 , 3 , 3 , 5 , 1 ] # Vector to store the returned # list of missing elements miss_ele = missing_elements(vec) # Print the list of elements for i in range ( len (miss_ele)): print (miss_ele[i], end = " " ) # This code is contributed by Mohit Kumar |
C#
// C# implementation of the approach using System; using System.Collections.Generic; class GFG { // Function to find the missing elements static List< int > missing_elements(List< int > vec) { // List<int> to store the list // of missing elements List< int > mis = new List< int >(); // For every given element for ( int i = 0; i < vec.Count; i++) { // Find its index int temp = Math.Abs(( int )vec[i]) - 1; // Update the element at the found index if (( int )vec[temp] > 0) vec[temp] = -( int )vec[temp]; else vec[temp] = vec[temp]; } for ( int i = 0; i < vec.Count; i++) { // Current element was not present // in the original vector if (( int )vec[i] > 0) mis.Add(i + 1); } return mis; } // Driver code public static void Main(String[] args) { List< int > vec = new List< int >(); vec.Add(3); vec.Add(3); vec.Add(3); vec.Add(5); vec.Add(1); // List to store the returned // list of missing elements List< int > miss_ele = missing_elements(vec); // Print the list of elements for ( int i = 0; i < miss_ele.Count; i++) Console.Write(miss_ele[i] + " " ); } } // This code is contributed by 29AjayKumar |
Javascript
<script> // Javascript implementation of the approach // Function to find the missing elements function missing_elements(vec) { // Vector to store the list // of missing elements let mis = []; // For every given element for (let i = 0; i < vec.length; i++) { // Find its index let temp = Math.abs(vec[i]) - 1; // Update the element at the found index vec[temp] = vec[temp] > 0 ? -vec[temp] : vec[temp]; } for (let i = 0; i < vec.length; i++) // Current element was not present // in the original vector if (vec[i] > 0) mis.push(i + 1); return mis; } let vec = [ 3, 3, 3, 5, 1 ]; // Vector to store the returned // list of missing elements let miss_ele = missing_elements(vec); // Print the list of elements for (let i = 0; i < miss_ele.length; i++) document.write(miss_ele[i] + " " ); </script> |
2 4
Time Complexity: O(N).
Auxiliary Space: O(N)
Approach 2 (Performing in-place sorting): The idea in this case, is to use in-place sorting.
In the given range [1, N] there should be an element corresponding to each index. So we can sort them and then if at any index the position and the element are not same, those elements are missing.
For sorting the elements in linear time see the below pseudo code:
Pseudo Code:
Algorithm:
Start
Set pointer i = 0
while i < N:
pos = arr[i] – 1
If arr[pos] = pos + 1: // the element is in the correct position
i++
Else: // swap it to correct position
swap(arr[pos], arr[i])
end if
end while
for i = 0 to N-1:
If Arr[i] = i+1:
continue
Else:
i+1 is missing.
end if
end for
End
Follow the illustration below for a better understanding:
Illustration:
Consider arr[] = {3, 3, 3, 5, 1}
Example on how to sort in linear sort
Below is the implementation of the above approach:
C++
// C++ code to implement the approach #include <bits/stdc++.h> using namespace std; // Function to find the missing elements vector< int > FindMissing(vector< int > arr) { int i = 0; int N = arr.size(); while (i < N) { // as 0 based indexing int correct = arr[i] - 1; if (arr[i] != arr[correct]) { swap(arr[i], arr[correct]); } else { i++; } } vector< int > ans; for (i = 0; i < N; i++) { if (arr[i] != i + 1) { ans.push_back(i + 1); } } return ans; } // Driver code int main() { vector< int > arr = { 1, 3, 3, 3, 5 }; // Function call vector< int > res = FindMissing(arr); for ( int x: res) cout << x << " " ; return 0; } // Code done by R.Balakrishnan (rbkraj000) |
Java
/*package whatever //do not write package name here */ import java.io.*; import java.util.ArrayList; import java.util.List; class GFG { // Driver code public static void main(String[] args) { int [] arr = { 1 , 3 , 3 , 3 , 5 }; System.out.println(FindMissing(arr)); } static public List<Integer>FindMissing( int [] arr) { int i = 0 ; // Here we are using cyclic sort to sort the array while (i < arr.length) { int correct = arr[i] - 1 ; // Finding correct index if (arr[i] != arr[correct]) { // calling swap function swap(arr, i, correct); } else { i++; } } // just find missing number // Making List to store the potential answer List<Integer> ans = new ArrayList<>(); for ( int index = 0 ; index < arr.length; index++) { if (arr[index] != index + 1 ) { ans.add(index + 1 ); } } return ans; } // This is the swap function static void swap( int [] arr, int first, int second) { int temp = arr[first]; arr[first] = arr[second]; arr[second] = temp; } } // This code is contributed by --> Karan Hora (karansinghyoyo) |
Python3
# Python code to implement the approach # Function to find the missing elements def FindMissing(arr): i = 0 N = len (arr) while (i < N): # as 0 based indexing correct = arr[i] - 1 if (arr[i] ! = arr[correct]): temp = arr[i] arr[i] = arr[correct] arr[correct] = temp else : i + = 1 ans = [] for i in range (N): if (arr[i] ! = i + 1 ): ans.append(i + 1 ) return ans arr = [ 1 , 3 , 3 , 3 , 5 ] # Function call res = FindMissing(arr) for x in range ( len (res)): print (res[x], end = " " ) # This code is contributed by lokeshmvs21. |
C#
// C# code to implement the approach using System; using System.Collections; public class GFG { // Function to find the missing elements static public ArrayList FindMissing( int [] arr) { int i = 0; // Here we are using cyclic sort to sort the array while (i < arr.Length) { int correct = arr[i] - 1; // Finding correct index if (arr[i] != arr[correct]) { // calling swap function swap(arr, i, correct); } else { i++; } } // just find missing number // Making List to store the potential answer ArrayList ans = new ArrayList(); for ( int index = 0; index < arr.Length; index++) { if (arr[index] != index + 1) { ans.Add(index + 1); } } return ans; } // This is the swap function static void swap( int [] arr, int first, int second) { int temp = arr[first]; arr[first] = arr[second]; arr[second] = temp; } static public void Main() { // Code int [] arr = { 1, 3, 3, 3, 5 }; ArrayList res = FindMissing(arr); for ( int i = 0; i < res.Count; i++) { Console.Write(res[i] + " " ); } } } // This code is contributed by lokeshmvs21. |
Javascript
// JS code to implement the approach // Function to find the missing elements function FindMissing(arr) { let i = 0; let N = arr.length; while (i < N) { // as 0 based indexing let correct = arr[i] - 1; if (arr[i] != arr[correct]) { let temp = arr[i]; arr[i] = arr[correct]; arr[correct = temp]; } else { i++; } } let ans = [] for (i = 0; i < N; i++) { if (arr[i] != i + 1) { ans.push(i + 1); } } return ans; } // Driver code let arr = [ 1, 3, 3, 3, 5 ]; // Function call let res = FindMissing(arr); console.log(res); // This code is contributed by akashish__ |
2 4
Time Complexity: O(N)
Even in the worst case, there will be N-1 Swaps + N-1 Comparisons done. So asymptotically it’s O(N).
Auxiliary Space: O(N)
Please Login to comment...