Find minimum area of rectangle with given set of coordinates
Given an array of set of points in the X-Y plane. The task is to find the minimum area of a rectangle that can be formed from these points. The sides of the rectangle should be parallel to the X and Y axes. If a rectangle cannot be formed with the given points then print
.
Examples:
Input: arr[][] = [[1, 1], [1, 3], [3, 1], [3, 3], [2, 2]]
Output: 4
The only rectangle possible will be formed with the points (1, 1), (1, 3), (3, 1) and (3, 3)
Input: arr[][] = [[1, 1], [1, 3], [3, 1], [3, 3], [4, 1], [4, 3]]
Output: 2
Approach: Group the points by coordinates, so that points on straight vertical lines are grouped together. Then, for every pair of points in a group, for eg. coordinates (X, Y1) and (X, Y2), we check for the smallest rectangle with this pair of points as the rightmost edge of the rectangle to be formed. We can do this by keeping track of all other pairs of points we’ve visited before. Finally return the minimum possible area of the rectangle obtained.
Below is the implementation of the above approach:
CPP
// C++ Implementation of above approach #include <bits/stdc++.h> using namespace std; // function to find minimum area of Rectangle int minAreaRect(vector<vector< int >> A){ // creating empty columns map< int ,vector< int >> columns; // fill columns with coordinates for ( auto i:A) columns[i[0]].push_back(i[1]); map<pair< int , int >, int > lastx; int ans = INT_MAX; for ( auto x:columns) { vector< int > column = x.second; sort(column.begin(), column.end()); for ( int j = 0; j < column.size(); j++) { for ( int i = 0; i < j; i++) { int y1 = column[i]; // check if rectangle can be formed if (lastx.find({y1, column[j]}) != lastx.end()) { ans = min(ans, (x.first - lastx[{y1, column[j]}]) * (column[j] - column[i])); } lastx[{y1, column[j]}] = x.first; } } } if (ans < INT_MAX) return ans; else return 0; } // Driver code int main() { vector<vector< int >> A = {{1, 1}, {1, 3}, {3, 1}, {3, 3}, {2, 2}}; cout << (minAreaRect(A)); return 0; } // This code is contributed by mohit kumar 29 |
Java
/*package whatever //do not write package name here */ // Java Implementation of above approach import java.io.*; import java.util.*; class GFG { //# function to find minimum area of Rectangle public static int minAreaRect( int [][] points) { // creating empty columns @SuppressWarnings ( "unchecked" ) Set<Integer> columns = new HashSet(); // fill columns with coordinates for ( int [] point : points) columns.add( 40001 * point[ 0 ] + point[ 1 ]); int ans = Integer.MAX_VALUE; for ( int i = 0 ; i < points.length; ++i) for ( int j = i + 1 ; j < points.length; ++j) { if (points[i][ 0 ] != points[j][ 0 ] && points[i][ 1 ] != points[j][ 1 ]) { if (columns.contains( 40001 * points[i][ 0 ] + points[j][ 1 ]) && columns.contains( 40001 * points[j][ 0 ] + points[i][ 1 ])) { ans = Math.min( ans, Math.abs(points[j][ 0 ] - points[i][ 0 ]) * Math.abs(points[j][ 1 ] - points[i][ 1 ])); } } } return ans < Integer.MAX_VALUE ? ans : 0 ; } // Driver code public static void main(String[] args) { int [][] A = {{ 1 , 1 }, { 1 , 3 }, { 3 , 1 }, { 3 , 3 }, { 2 , 2 }}; System.out.println(minAreaRect(A)); } } // This code is contributed by maheshwaripiyush9 |
Python
# Python Implementation of above approach import collections # function to find minimum area of Rectangle def minAreaRect(A): # creating empty columns columns = collections.defaultdict( list ) # fill columns with coordinates for x, y in A: columns[x].append(y) lastx = {} ans = float ( 'inf' ) for x in sorted (columns): column = columns[x] column.sort() for j, y2 in enumerate (column): for i in range (j): y1 = column[i] # check if rectangle can be formed if (y1, y2) in lastx: ans = min (ans, (x - lastx[y1, y2]) * (y2 - y1)) lastx[y1, y2] = x if ans < float ( 'inf' ): return ans else : return 0 # Driver code A = [[ 1 , 1 ], [ 1 , 3 ], [ 3 , 1 ], [ 3 , 3 ], [ 2 , 2 ]] print (minAreaRect(A)) |
C#
// C# Implementation of above approach using System; using System.Collections.Generic; class GFG { //# function to find minimum area of Rectangle public static int minAreaRect( int [, ] points) { // creating empty columns HashSet< int > columns = new HashSet< int >(); // fill columns with coordinates for ( int i = 0; i < points.GetLength(0); i++) columns.Add(40001 * points[i, 0] + points[i, 1]); int ans = Int32.MaxValue; for ( int i = 0; i < points.GetLength(0); ++i) for ( int j = i + 1; j < points.GetLength(0); ++j) { if (points[i, 0] != points[j, 0] && points[i, 1] != points[j, 1]) { if (columns.Contains(40001 * points[i, 0] + points[j, 1]) && columns.Contains( 40001 * points[j, 0] + points[i, 1])) { ans = Math.Min( ans, Math.Abs(points[j, 0] - points[i, 0]) * Math.Abs(points[j, 1] - points[i, 1])); } } } return ans < Int32.MaxValue ? ans : 0; } // Driver code public static void Main( string [] args) { int [, ] A = { { 1, 1 }, { 1, 3 }, { 3, 1 }, { 3, 3 }, { 2, 2 } }; Console.WriteLine(minAreaRect(A)); } } // This code is contributed by phasing17 |
Javascript
<script> /*package whatever //do not write package name here */ // Javascript Implementation of above approach //# function to find minimum area of Rectangle function minAreaRect(points) { // creating empty columns let columns = new Set(); // fill columns with coordinates for (let point=0;point<points.length;point++) columns.add(40001 * points[point][0] + points[point][1]); let ans = Number.MAX_VALUE; for (let i = 0; i < points.length; ++i) for (let j = i + 1; j < points.length; ++j) { if (points[i][0] != points[j][0] && points[i][1] != points[j][1]) { if (columns.has(40001 * points[i][0] + points[j][1]) && columns.has( 40001 * points[j][0] + points[i][1])) { ans = Math.min( ans, Math.abs(points[j][0] - points[i][0]) * Math.abs(points[j][1] - points[i][1])); } } } return ans < Number.MAX_VALUE ? ans : 0; } // Driver code let A = [[1, 1], [1, 3], [3, 1], [3, 3], [2, 2]]; document.write(minAreaRect(A)); // This code is contributed by patel2127 </script> |
4
Time Complexity: O(N*N), as we are using nested loops.
Auxiliary Space: O(N*N), as we are using extra space.
Please Login to comment...