Find maximum GCD value from root to leaf in a Binary tree
Given a Binary Tree, the task is to find the maximum value of GCD from any path from the root node to the leaf node.
Examples:
Input: Below is the given tree:
Output: 3
Explanation:
Path 1: 15->3->5 = gcd(15, 3, 15) =3
Path 2: 15->3->1 =gcd(15, 3, 1) = 1
Path 3: 15->7->31=gcd(15, 7, 31)= 1
Path 4: 15->7->9 = gcd(15, 7, 9) =1, out of these 3 is the maximum.Input: Below is the given tree:
Output: 1
Approach: The idea is to traverse all the paths from the root node to the leaf node and calculate the GCD of all the nodes that occurred in that path. Below are the steps:
- Perform a preorder traversal on the given Binary Tree.
- Iterate over all the paths and track all path values in an array.
- Whenever encountered a leaf value then find the GCD of all the values in an array.
- Update the GCD to the maximum value.
Below is the implementation of the above approach:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Initialise to update the maximum // gcd value from all the path int maxm = 0; // Node structure struct Node { int val; // Left & right child of the node Node *left, *right; // Initialize constructor Node( int x) { val = x; left = NULL; right = NULL; } }; // Function to find gcd of a and b int gcd( int a, int b) { if (b == 0) return a; return gcd(b, a % b); } // function to find the gcd of a path int find_gcd(vector< int > arr) { if (arr.size() == 1) return arr[0]; int g = arr[0]; for ( int i = 1; i < arr.size(); i++) { g = gcd(g, arr[i]); } return g; } // Function to find the maximum value // of gcd from root to leaf // in a Binary tree void maxm_gcd(Node* root, vector< int > ans) { // Check if root is not null if (!root) return ; if (root->left == NULL and root->right == NULL) { ans.push_back(root->val); // Find the maximum gcd of // path value and store in // global maxm variable maxm = max(find_gcd(ans), maxm); return ; } // Traverse left of binary tree ans.push_back(root->val); maxm_gcd(root->left, ans); // Traverse right of the binary tree maxm_gcd(root->right, ans); } // Driver Code int main() { // Given Tree Node* root = new Node(15); root->left = new Node(3); root->right = new Node(7); root->left->left = new Node(15); root->left->right = new Node(1); root->right->left = new Node(31); root->right->right = new Node(9); // Function Call maxm_gcd(root, {}); // Print the maximum AND value cout << maxm << endl; return 0; } |
Java
// Java program for the above approach import java.util.*; class GFG{ // Initialise to update the maximum // gcd value from all the path static int maxm = 0 ; // Node structure static class Node { int val; // Left & right child of the node Node left, right; // Initialize constructor Node( int x) { val = x; left = null ; right = null ; } }; // Function to find gcd of a and b static int gcd( int a, int b) { if (b == 0 ) return a; return gcd(b, a % b); } // Function to find the gcd of a path static int find_gcd(Vector<Integer> arr) { if (arr.size() == 1 ) return arr.get( 0 ); int g = arr.get( 0 ); for ( int i = 1 ; i < arr.size(); i++) { g = gcd(g, arr.get( 1 )); } return g; } // Function to find the maximum value // of gcd from root to leaf // in a Binary tree static void maxm_gcd(Node root, Vector<Integer> ans) { // Check if root is not null if (root == null ) return ; if (root.left == null && root.right == null ) { ans.add(root.val); // Find the maximum gcd of // path value and store in // global maxm variable maxm = Math.max(find_gcd(ans), maxm); return ; } // Traverse left of binary tree ans.add(root.val); maxm_gcd(root.left, ans); // Traverse right of the binary tree maxm_gcd(root.right, ans); } // Driver Code public static void main(String[] args) { // Given Tree Node root = new Node( 15 ); root.left = new Node( 3 ); root.right = new Node( 7 ); root.left.left = new Node( 15 ); root.left.right = new Node( 1 ); root.right.left = new Node( 31 ); root.right.right = new Node( 9 ); // Function call maxm_gcd(root, new Vector<>()); // Print the maximum AND value System.out.print(maxm + "\n" ); } } // This code is contributed by Rajput-Ji |
Python3
# Python3 implementation of # the above approach # Initialise to update the maximum # gcd value from all the path global maxm maxm = 0 # Node structure class Node: # Initialize constructor def __init__( self , x): self .val = x self .left = None self .right = None # Function to find gcd of a and b def gcd(a, b): if (b = = 0 ): return a return gcd(b, a % b) # Function to find the gcd of a path def find_gcd(arr): if ( len (arr) = = 1 ): return arr[ 0 ] g = arr[ 0 ] for i in range ( 1 , len (arr)): g = gcd(g, arr[i]) return g # Function to find the maximum value # of gcd from root to leaf # in a Binary tree def maxm_gcd(root, ans): global maxm # Check if root is not null if ( not root): return if (root.left = = None and root.right = = None ): ans.append(root.val) # Find the maximum gcd of # path value and store in # global maxm variable maxm = max (find_gcd(ans), maxm) return # Traverse left of binary tree ans.append(root.val) maxm_gcd(root.left, ans) # Traverse right of the binary tree maxm_gcd(root.right, ans) # Driver Code if __name__ = = '__main__' : # Given Tree root = Node( 15 ) root.left = Node( 3 ) root.right = Node( 7 ) root.left.left = Node( 15 ) root.left.right = Node( 1 ) root.right.left = Node( 31 ) root.right.right = Node( 9 ) # Function call maxm_gcd(root, []) # Print the maximum AND value print (maxm) # This code is contributed by Shivam Singh |
C#
// C# program for the above approach using System; using System.Collections.Generic; class GFG{ // Initialise to update the maximum // gcd value from all the path static int maxm = 0; // Node structure class Node { public int val; // Left & right child of the node public Node left, right; // Initialize constructor public Node( int x) { val = x; left = null ; right = null ; } }; // Function to find gcd of a and b static int gcd( int a, int b) { if (b == 0) return a; return gcd(b, a % b); } // Function to find the gcd of a path static int find_gcd(List< int > arr) { if (arr.Count == 1) return arr[0]; int g = arr[0]; for ( int i = 1; i < arr.Count; i++) { g = gcd(g, arr[1]); } return g; } // Function to find the maximum value // of gcd from root to leaf // in a Binary tree static void maxm_gcd(Node root, List< int > ans) { // Check if root is not null if (root == null ) return ; if (root.left == null && root.right == null ) { ans.Add(root.val); // Find the maximum gcd of // path value and store in // global maxm variable maxm = Math.Max(find_gcd(ans), maxm); return ; } // Traverse left of binary tree ans.Add(root.val); maxm_gcd(root.left, ans); // Traverse right of the binary tree maxm_gcd(root.right, ans); } // Driver Code public static void Main(String[] args) { // Given Tree Node root = new Node(15); root.left = new Node(3); root.right = new Node(7); root.left.left = new Node(15); root.left.right = new Node(1); root.right.left = new Node(31); root.right.right = new Node(9); // Function call maxm_gcd(root, new List< int >()); // Print the maximum AND value Console.Write(maxm + "\n" ); } } // This code is contributed by sapnasingh4991 |
Javascript
<script> // JavaScript program for the above approach // Initialise to update the maximum // gcd value from all the path let maxm = 0; // Node structure class Node { // Initialize constructor constructor(x) { this .val = x; this .left = null ; this .right = null ; } } var root; // Function to find gcd of a and b function gcd(a, b) { if (b == 0) return a; return gcd(b, a % b); } // Function to find the gcd of a path function find_gcd(arr) { if (arr.length == 1) return arr[0]; let g = arr[0]; for (let i = 1; i < arr.length; i++) { g = gcd(g, arr[1]); } return g; } // Function to find the maximum value // of gcd from root to leaf // in a Binary tree function maxm_gcd(root, ans) { // Check if root is not null if (root == null ) return ; if (root.left == null && root.right == null ) { ans.push(root.val); // Find the maximum gcd of // path value and store in // global maxm variable maxm = Math.max(find_gcd(ans), maxm); return ; } // Traverse left of binary tree ans.push(root.val); maxm_gcd(root.left, ans); // Traverse right of the binary tree maxm_gcd(root.right, ans); } // Driver Code // Given Tree root = new Node(15); root.left = new Node(3); root.right = new Node(7); root.left.left = new Node(15); root.left.right = new Node(1); root.right.left = new Node(31); root.right.right = new Node(9); // Function call let arr = []; maxm_gcd(root, arr); // Print the maximum AND value document.write(maxm); // This code is contributed by Dharanendra L V. </script> |
Output:
3
Time Complexity: O(N2)
Auxiliary Space: O(N)
Please Login to comment...