GFG App
Open App
Browser
Continue

# Find M such that GCD of M and given number N is maximum

Given an integer N greater than 2, the task is to find an element M such that GCD(N, M) is maximum.

Examples:

Input: N = 10
Output: 5
Explanation:
gcd(1, 10), gcd(3, 10), gcd(7, 10), gcd(9, 10) is 1,
gcd(2, 10), gcd(4, 10), gcd(6, 10), gcd(8, 10) is 2,
gcd(5, 10) is 5 which is maximum.

Input: N = 21
Output: 7
Explanation:
gcd(7, 21) is maximum among all the integers from 1 to 21.

Naive Approach: The simplest approach is to loop through all the numbers in the range [1, N-1] and find GCD of each number with N. The number which given maximum GCD with N is the required result.

Time Complexity: O(N)
Auxiliary Space: O(1)

Efficient Approach: To optimize the above approach, we observe that the GCD of two numbers will be definitely one of its divisors in the range [1, N-1]. And, GCD will be maximum if the divisor is maximum.
Therefore, the idea is to find all the divisors of N and store a maximum of those divisors which is the required result.

Below is the implementation of the above approach:

## C++

 `// C++ program for the above approach` `#include ` `using` `namespace` `std;`   `// Function to find the integer M` `// such that gcd(N, M) is maximum` `int` `findMaximumGcd(``int` `n)` `{` `    ``// Initialize a variable` `    ``int` `max_gcd = 1;`   `    ``// Find all the divisors of N and` `    ``// return the maximum divisor` `    ``for` `(``int` `i = 1; i * i <= n; i++) {`   `        ``// Check if i is divisible by N` `        ``if` `(n % i == 0) {`   `            ``// Update max_gcd` `            ``if` `(i > max_gcd)` `                ``max_gcd = i;`   `            ``if` `((n / i != i)` `                ``&& (n / i != n)` `                ``&& ((n / i) > max_gcd))` `                ``max_gcd = n / i;` `        ``}` `    ``}`   `    ``// Return the maximum value` `    ``return` `max_gcd;` `}`   `// Driver Code` `int` `main()` `{` `    ``// Given Number` `    ``int` `N = 10;`   `    ``// Function Call` `    ``cout << findMaximumGcd(N);` `    ``return` `0;` `}`

## Java

 `// Java program for the above approach` `import` `java.util.*;`   `class` `GFG{`   `// Function to find the integer M` `// such that gcd(N, M) is maximum` `static` `int` `findMaximumGcd(``int` `n)` `{` `    `  `    ``// Initialize a variable` `    ``int` `max_gcd = ``1``;`   `    ``// Find all the divisors of N and` `    ``// return the maximum divisor` `    ``for``(``int` `i = ``1``; i * i <= n; i++) ` `    ``{` `        `  `        ``// Check if i is divisible by N` `        ``if` `(n % i == ``0``) ` `        ``{` `            `  `            ``// Update max_gcd` `            ``if` `(i > max_gcd)` `                ``max_gcd = i;`   `            ``if` `((n / i != i) && ` `                ``(n / i != n) &&` `               ``((n / i) > max_gcd))` `                ``max_gcd = n / i;` `        ``}` `    ``}`   `    ``// Return the maximum value` `    ``return` `max_gcd;` `}`   `// Driver Code` `public` `static` `void` `main(String[] args)` `{` `    `  `    ``// Given Number` `    ``int` `N = ``10``;`   `    ``// Function Call` `    ``System.out.print(findMaximumGcd(N));` `}` `}`   `// This code is contributed by Amit Katiyar`

## Python3

 `# Python3 program for the above approach`   `# Function to find the integer M ` `# such that gcd(N, M) is maximum` `def` `findMaximumGcd(n):` `    `  `    ``# Initialize variables ` `    ``max_gcd ``=` `1` `    ``i ``=` `1` `    `  `    ``# Find all the divisors of N and ` `    ``# return the maximum divisor ` `    ``while` `(i ``*` `i <``=` `n):` `        `  `        ``# Check if i is divisible by N` `        ``if` `n ``%` `i ``=``=` `0``:` `            `  `            ``# Update max_gcd ` `            ``if` `(i > max_gcd):` `                ``max_gcd ``=` `i` `                `  `            ``if` `((n ``/` `i !``=` `i) ``and` `                ``(n ``/` `i !``=` `n) ``and` `               ``((n ``/` `i) > max_gcd)):` `                ``max_gcd ``=` `n ``/` `i` `        ``i ``+``=` `1` `        `  `    ``# Return the maximum value ` `    ``return` `(``int``(max_gcd))`   `# Driver Code ` `if` `__name__ ``=``=` `'__main__'``:` `    `  `    ``# Given number ` `    ``n ``=` `10` `    `  `    ``# Function call` `    ``print``(findMaximumGcd(n))` `    `  `# This code is contributed by virusbuddah_`

## C#

 `// C# program for the ` `// above approach` `using` `System;` `class` `GFG{`   `// Function to find the ` `// integer M such that ` `// gcd(N, M) is maximum` `static` `int` `findMaximumGcd(``int` `n)` `{    ` `  ``// Initialize a variable` `  ``int` `max_gcd = 1;`   `  ``// Find all the divisors of ` `  ``// N and return the maximum ` `  ``// divisor` `  ``for``(``int` `i = 1; ` `          ``i * i <= n; i++) ` `  ``{` `    ``// Check if i is ` `    ``// divisible by N` `    ``if` `(n % i == 0) ` `    ``{` `      ``// Update max_gcd` `      ``if` `(i > max_gcd)` `        ``max_gcd = i;`   `      ``if` `((n / i != i) && ` `          ``(n / i != n) &&` `          ``((n / i) > max_gcd))` `        ``max_gcd = n / i;` `    ``}` `  ``}`   `  ``// Return the maximum ` `  ``// value` `  ``return` `max_gcd;` `}`   `// Driver Code` `public` `static` `void` `Main(String[] args)` `{    ` `  ``// Given Number` `  ``int` `N = 10;`   `  ``// Function Call` `  ``Console.Write(findMaximumGcd(N));` `}` `}`   `// This code is contributed by Rajput-Ji`

## Javascript

 ``

Output:

`5`

Time Complexity: O(log2N)
Auxiliary Space: O(1)

My Personal Notes arrow_drop_up