Skip to content
Related Articles

Related Articles

Find M for which numbers A, B, C form an A.P. if any one is divided by M

View Discussion
Improve Article
Save Article
  • Last Updated : 09 Feb, 2022
View Discussion
Improve Article
Save Article

Given three positive integers A, B, and C, the task is to find out that, if we divide any one of them with any integer M(m>0), can they form an A.P.(Arithmetic Progression) in the same given order. If there are multiple values possible then print all of them and if no value is possible then print -1.

Examples:

Input:  A = 25, B = 10, C = 15
Output:  5
Explanation: If A(25) is divided by 5 then the three integers are 5, 10, 15 which form an A.P
with common difference 5.

Input:  A = 18, B = 4, C = 2
Output:  3.
Explanation: If A(18) is divided by 3 then the three integers are 6, 4, 2 which form an A.P
with common difference -2.

Input:  A = 7, B = 11, C = 13
Output:  -1
Explanation: It can be proved that their exists no positive integer which on dividing with 
any one of  the three numbers can form an A.P.

 

Approach: 

The three numbers A, B, and C are in A.P. if-

B – A = C – B = d

Here, 
A, B, and C are the three numbers
d is the common difference

Using the above common difference property of A.P. there can be three formulas for three cases-

  • When A is divided by an integer m1-

For A / m1, B, C  to form an A.P., we have 

B – A / m1 = C – B

Thus, m1 = a / (2 * B – C)

  • When B is divided by an integer m2-

For A, B / m2, C  to form an A.P., we have 

B / m2 – A = C – B / m2

Thus, m2 = 2 * B/ (C + A)

  • When C is divided by an integer m3-

For A, B, C / m3  to form an A.P., we have 

B – A = C / m3 – B

Thus, m3 = C / (2 * B – A)

  • Now we have possible values of M for each case, then check for each of the three values if any one of them is a positive integer, then that value is the required answer.
  • If no such possible value exists then print -1.

Below is the implementation for the above approach-

C++




// C++ code to implement the given approach
#include <bits/stdc++.h>
using namespace std;
 
// Utility function to check
// if given argument is an integer or not
bool ifint(double x)
{
    int a = x;
 
    if (x - a > 0)
        return false;
    else
        return true;
}
 
// Function to find any integer M if exists
void findVal(int A, int B, int C)
{
    double m1 = (double)(A / (2 * B - C));
    double m2 = (double)(2 * B / (C + A));
    double m3 = (double)(C / (2 * B - A));
 
    // Checks if it is both
    // positive and an integer
    if (m1 > 1 && ifint(m1))
        cout << m1;
 
    else if (m2 > 1 && ifint(m2))
        cout << m2;
 
    else if (m3 > 1 && ifint(m3))
        cout << m3;
 
    else
        cout << "-1";
}
 
// Driver code
int main()
{
    int A = 2;
    int B = 4;
    int C = 18;
 
    findVal(A, B, C);
    return 0;
}


Java




// Java program for the above approach
import java.io.*;
import java.lang.*;
import java.util.*;
 
class GFG {
 
  // Utility function to check
  // if given argument is an integer or not
  static Boolean ifint(double x)
  {
    int a = (int)x;
 
    if (x - a > 0)
      return false;
    else
      return true;
  }
 
  // Function to find any integer M if exists
  static void findVal(int A, int B, int C)
  {
    double m1 = (double)(A / (2 * B - C));
    double m2 = (double)(2 * B / (C + A));
    double m3 = (double)(C / (2 * B - A));
 
    // Checks if it is both
    // positive and an integer
    if (m1 > 1 && ifint(m1)){
      int M1 = (int)m1;
      System.out.print(M1);
    }
 
    else if (m2 > 1 && ifint(m2)){
      int M2 = (int)m2;
      System.out.print(M2);
    }
 
    else if (m3 > 1 && ifint(m3)){
      int M3 = (int)m3;
      System.out.print(M3);
    }
 
    else
      System.out.print("-1");
  }
 
  // Driver code
  public static void main (String[] args) {
    int A = 2;
    int B = 4;
    int C = 18;
 
    findVal(A, B, C);   
  }
}
 
// This code is contributed by hrithikgarg03188/


Python




# Python code to implement the given approach
 
# Utility function to check
# if given argument is an integer or not
def ifint(x):
    a = x
 
    if (x - a > 0):
        return False
    else:
        return True
 
# Function to find any integer M if exists
def findVal(A, B, C):
     
    m1 = (A / (2 * B - C))
    m2 = (2 * B / (C + A))
    m3 = (C / (2 * B - A));
 
    # Checks if it is both
    # positive and an integer
    if (m1 > 1 and ifint(m1)):
        print(m1)
 
    elif (m2 > 1 and ifint(m2)):
        print(m2)
 
    elif (m3 > 1 and ifint(m3)):
        print(m3)
 
    else:
        print(-1)
 
# Driver code
A = 2
B = 4
C = 18
 
findVal(A, B, C)
 
# This code is contributed by Samim Hossain Mondal.


C#




// C# code to implement the given approach
using System;
class GFG {
    // Utility function to check
    // if given argument is an integer or not
    static bool ifint(double x)
    {
        double a = x;
 
        if (x - a > 0)
            return false;
        else
            return true;
    }
 
    // Function to find any integer M if exists
    static void findVal(int A, int B, int C)
    {
        double m1 = Convert.ToDouble(A / (2 * B - C));
        double m2 = Convert.ToDouble(2 * B / (C + A));
        double m3 = Convert.ToDouble(C / (2 * B - A));
 
        // Checks if it is both
        // positive and an integer
        if (m1 > 1 && ifint(m1))
            Console.Write(m1);
 
        else if (m2 > 1 && ifint(m2))
            Console.Write(m2);
 
        else if (m3 > 1 && ifint(m3))
            Console.Write(m3);
 
        else
            Console.Write(-1);
    }
 
    // Driver code
    public static int Main()
    {
        int A = 2;
        int B = 4;
        int C = 18;
 
        findVal(A, B, C);
        return 0;
    }
}
 
// This code is contributed by Taranpreet


Javascript




<script>
        // JavaScript code for the above approach
 
        // Utility function to check
        // if given argument is an integer or not
        function ifint(x) {
            let a = x;
 
            if (x - a > 0)
                return false;
            else
                return true;
        }
 
        // Function to find any integer M if exists
        function findVal(A, B, C) {
            let m1 = (A / (2 * B - C));
            let m2 = (2 * B / (C + A));
            let m3 = (C / (2 * B - A));
 
            // Checks if it is both
            // positive and an integer
            if (m1 > 1 && ifint(m1))
                document.write(m1);
 
            else if (m2 > 1 && ifint(m2))
                document.write(m2);
 
            else if (m3 > 1 && ifint(m3))
                document.write(m3);
 
            else
                document.write("-1");
        }
 
        // Driver code
        let A = 2;
        let B = 4;
        let C = 18;
 
        findVal(A, B, C);
 
       // This code is contributed by Potta Lokesh
    </script>


 
 

Output

3

 

Time Complexity: O(1)
Auxiliary Space: O(1)

 

C++




// C++ code to implement the given approach
#include <bits/stdc++.h>
using namespace std;
 
// Utility function to check
// if given argument is an integer or not
bool ifint(double x)
{
    int a = x;
 
    if (x - a > 0)
        return false;
    else
        return true;
}
 
// Function to find any integer M if exists
void findVal(int A, int B, int C)
{
    double m1 = (double)(A / (2 * B - C));
    double m2 = (double)(2 * B / (C + A));
    double m3 = (double)(C / (2 * B - A));
 
    // Checks if it is both
    // positive and an integer
    if (m1 > 1 && ifint(m1))
        cout << m1;
 
    else if (m2 > 1 && ifint(m2))
        cout << m2;
 
    else if (m3 > 1 && ifint(m3))
        cout << m3;
 
    else
        cout << "-1";
}
 
// Driver code
int main()
{
    int A = 2;
    int B = 4;
    int C = 18;
 
    findVal(A, B, C);
    return 0;
}


Java




// Java program for the above approach
import java.io.*;
import java.lang.*;
import java.util.*;
 
class GFG {
 
  // Utility function to check
  // if given argument is an integer or not
  static Boolean ifint(double x)
  {
    int a = (int)x;
 
    if (x - a > 0)
      return false;
    else
      return true;
  }
 
  // Function to find any integer M if exists
  static void findVal(int A, int B, int C)
  {
    double m1 = (double)(A / (2 * B - C));
    double m2 = (double)(2 * B / (C + A));
    double m3 = (double)(C / (2 * B - A));
 
    // Checks if it is both
    // positive and an integer
    if (m1 > 1 && ifint(m1)){
      int M1 = (int)m1;
      System.out.print(M1);
    }
 
    else if (m2 > 1 && ifint(m2)){
      int M2 = (int)m2;
      System.out.print(M2);
    }
 
    else if (m3 > 1 && ifint(m3)){
      int M3 = (int)m3;
      System.out.print(M3);
    }
 
    else
      System.out.print("-1");
  }
 
  // Driver code
  public static void main (String[] args) {
    int A = 2;
    int B = 4;
    int C = 18;
 
    findVal(A, B, C);   
  }
}
 
// This code is contributed by hrithikgarg03188/


Python3




# Python code for the above approach
 
# Utility function to check
# if given argument is an integer or not
def ifint(x):
    a = x;
 
    if (x - a > 0):
        return False;
    else:
        return True;
 
# Function to find any integer M if exists
def findVal(A, B, C):
    m1 = (A / (2 * B - C));
    m2 = (2 * B / (C + A));
    m3 = (C / (2 * B - A));
 
    # Checks if it is both
    # positive and an integer
    if (m1 > 1 and ifint(m1)):
        print(int(m1))
 
    elif (m2 > 1 and ifint(m2)):
        print(int(m2))
 
    elif (m3 > 1 and ifint(m3)):
        print(int(m3))
 
    else:
        print("-1");
 
# Driver code
A = 2;
B = 4;
C = 18;
 
findVal(A, B, C);
 
# This code is contributed by Saurabh Jaiswal


C#




// C# code to implement the given approach
using System;
class GFG
{
   
    // Utility function to check
    // if given argument is an integer or not
    static bool ifint(double x)
    {
        double a = x;
 
        if (x - a > 0)
            return false;
        else
            return true;
    }
 
    // Function to find any integer M if exists
    static void findVal(int A, int B, int C)
    {
        double m1 = Convert.ToDouble(A / (2 * B - C));
        double m2 = Convert.ToDouble(2 * B / (C + A));
        double m3 = Convert.ToDouble(C / (2 * B - A));
 
        // Checks if it is both
        // positive and an integer
        if (m1 > 1 && ifint(m1))
            Console.Write(m1);
 
        else if (m2 > 1 && ifint(m2))
            Console.Write(m2);
 
        else if (m3 > 1 && ifint(m3))
            Console.Write(m3);
 
        else
            Console.Write(-1);
    }
 
    // Driver code
    public static int Main()
    {
        int A = 2;
        int B = 4;
        int C = 18;
 
        findVal(A, B, C);
        return 0;
    }
}
 
// This code is contributed by Taranpreet


Javascript




<script>
        // JavaScript code for the above approach
 
        // Utility function to check
        // if given argument is an integer or not
        function ifint(x) {
            let a = x;
 
            if (x - a > 0)
                return false;
            else
                return true;
        }
 
        // Function to find any integer M if exists
        function findVal(A, B, C) {
            let m1 = (A / (2 * B - C));
            let m2 = (2 * B / (C + A));
            let m3 = (C / (2 * B - A));
 
            // Checks if it is both
            // positive and an integer
            if (m1 > 1 && ifint(m1))
                document.write(m1);
 
            else if (m2 > 1 && ifint(m2))
                document.write(m2);
 
            else if (m3 > 1 && ifint(m3))
                document.write(m3);
 
            else
                document.write("-1");
        }
 
        // Driver code
        let A = 2;
        let B = 4;
        let C = 18;
 
        findVal(A, B, C);
 
       // This code is contributed by Potta Lokesh
    </script>



My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!