Find K closest elements to given Value in Unsorted Array
Given an unsorted array arr[] and two numbers X and K, the task is to find K closest values to X in arr[].
Examples:
Input: arr[] = {10, 2, 14, 4, 7, 6}, X = 5, K = 3
Output: 4 6 7
Explanation: Three closest values of x are 4, 6 and 7.Input: arr[] = {-10, -50, 20, 17, 80}, X = 20, K = 2
Output: 17 20
Find K closest Element by Sorting the Array:
The simple idea is to sort the array. Then apply the method discussed to K closest values in a sorted array.
Find K closest Element using Heap:
An efficient approach is to use a max heap data structure of size K.
Find the absolute difference of the array elements with X and push them in the heap. If at any position the heap gets filled then only push elements when it has an absolute difference less than the first element of the max heap.
Follow the steps mentioned below to implement the idea:
- Build a max heap of size K.
- Initially push the first K elements of the array with their absolute difference from X.
- Now traverse from K+1 to N:
- If the absolute difference is less than the maximum difference stored in the heap, then remove the maximum difference and insert the current difference.
- After the traversal is over, the K elements stored in the heap are the required K closest elements.
Below is the implementation of the above approach.
C++
// C++ program to find k closest elements #include <bits/stdc++.h> using namespace std; // Function to find the K closest elements void printKclosest( int arr[], int n, int x, int k) { // Make a max heap of difference with // first k elements. priority_queue<pair< int , int > > pq; for ( int i = 0; i < k; i++) pq.push({ abs (arr[i] - x), i }); // Now process remaining elements. for ( int i = k; i < n; i++) { int diff = abs (arr[i] - x); // If difference with current // element is more than root, // then ignore it. if (diff > pq.top().first) continue ; // Else remove root and insert pq.pop(); pq.push({ diff, i }); } // Print contents of heap. while (pq.empty() == false ) { cout << arr[pq.top().second] << " " ; pq.pop(); } } // Driver code int main() { int arr[] = { -10, -50, 20, 17, 80 }; int X = 20, K = 2; int N = sizeof (arr) / sizeof (arr[0]); // Function call printKclosest(arr, N, X, K); return 0; } |
Java
// Java program to find k closest elements import java.util.Comparator; import java.util.PriorityQueue; class Pair { Integer key; Integer value; public Pair(Integer key, Integer value) { this .key = key; this .value = value; } public Integer getKey() { return key; } public void setKey(Integer key) { this .key = key; } public Integer getValue() { return value; } public void setValue(Integer value) { this .value = value; } } class GFG { public static void printKclosest( int [] arr, int n, int x, int k) { // Make a max heap. PriorityQueue<Pair> pq = new PriorityQueue<>( new Comparator<Pair>() { public int compare(Pair p1, Pair p2) { return p2.getValue().compareTo( p1.getValue()); } }); // Build heap of difference with // first k elements for ( int i = 0 ; i < k; i++) { pq.offer( new Pair(arr[i], Math.abs(arr[i] - x))); } // Now process remaining elements. for ( int i = k; i < n; i++) { int diff = Math.abs(arr[i] - x); // If difference with current // element is more than root, // then ignore it. if (diff > pq.peek().getValue()) continue ; // Else remove root and insert pq.poll(); pq.offer( new Pair(arr[i], diff)); } // Print contents of heap. while (!pq.isEmpty()) { System.out.print(pq.poll().getKey() + " " ); } } // Driver code public static void main(String[] args) { int arr[] = { - 10 , - 50 , 20 , 17 , 80 }; int X = 20 , K = 2 ; int N = arr.length; printKclosest(arr, N, X, K); } } // This code is contributed by Ashok Borra |
Python3
# Python3 program to find k closest elements import math import sys from queue import PriorityQueue # Function to find the K closest elements def printKclosest(arr,n,x,k): # Make a max heap of difference with # first k elements. pq = PriorityQueue() for i in range (k): pq.put(( - abs (arr[i] - x),i)) # Now process remaining elements for i in range (k,n): diff = abs (arr[i] - x) p,pi = pq.get() curr = - p # If difference with current # element is more than root, # then put it back. if diff>curr: pq.put(( - curr,pi)) continue else : # Else remove root and insert pq.put(( - diff,i)) # Print contents of heap. while ( not pq.empty()): p,q = pq.get() print ( "{} " . format (arr[q]),end = "") # Driver code if __name__ = = '__main__' : arr = [ - 10 , - 50 , 20 , 17 , 80 ] X, K = 20 , 2 N = len (arr) printKclosest(arr, N, X, K) |
C#
// C# program to find k closest elements using System; using System.Collections.Generic; class GFG { // Function to find the K closest elements static void printKclosest( int [] arr, int n, int x, int k) { // Make a max heap of difference with // first k elements. List<Tuple< int , int > > pq = new List<Tuple< int , int > >(); for ( int i = 0; i < k; i++) { pq.Add( new Tuple< int , int >(Math.Abs(arr[i] - x), i)); } pq.Sort(); pq.Reverse(); // Now process remaining elements. for ( int i = k; i < n; i++) { int diff = Math.Abs(arr[i] - x); // If difference with current // element is more than root, // then ignore it. if (diff > pq[0].Item1) continue ; // Else remove root and insert pq.RemoveAt(0); pq.Add( new Tuple< int , int >(diff, i)); pq.Sort(); pq.Reverse(); } // Print contents of heap. while (pq.Count > 0) { Console.Write(arr[pq[0].Item2] + " " ); pq.RemoveAt(0); } } // Driver code static void Main() { int [] arr = { -10, -50, 20, 17, 80 }; int X = 20, K = 2; int N = arr.Length; printKclosest(arr, N, X, K); } } // This code is contributed by divyesh072019. |
17 20
Time Complexity: O(N * logK)
Auxiliary Space: O(K)
Please Login to comment...