Find if an expression has duplicate parenthesis or not
Given a balanced expression, find if it contains duplicate parenthesis or not. A set of parenthesis are duplicate if the same subexpression is surrounded by multiple parenthesis.
Examples:
Below expressions have duplicate parenthesis - ((a+b)+((c+d))) The subexpression "c+d" is surrounded by two pairs of brackets. (((a+(b)))+(c+d)) The subexpression "a+(b)" is surrounded by two pairs of brackets. (((a+(b))+c+d)) The whole expression is surrounded by two pairs of brackets. ((a+(b))+(c+d)) (b) and ((a+(b)) is surrounded by two pairs of brackets but, it will not be counted as duplicate. Below expressions don't have any duplicate parenthesis - ((a+b)+(c+d)) No subexpression is surrounded by duplicate brackets.
It may be assumed that the given expression is valid and there are not any white spaces present.
The idea is to use stack. Iterate through the given expression and for each character in the expression, if the character is a open parenthesis ‘(‘ or any of the operators or operands, push it to the top of the stack. If the character is close parenthesis ‘)’, then pop characters from the stack till matching open parenthesis ‘(‘ is found and a counter is used, whose value is incremented for every character encountered till the opening parenthesis ‘(‘ is found. If the number of characters encountered between the opening and closing parenthesis pair, which is equal to the value of the counter, is less than 1, then a pair of duplicate parenthesis is found else there is no occurrence of redundant parenthesis pairs. For example, (((a+b))+c) has duplicate brackets around “a+b”. When the second “)” after a+b is encountered, the stack contains “((“. Since the top of stack is a opening bracket, it can be concluded that there are duplicate brackets.
Below is the implementation of above idea :
C++
// C++ program to find duplicate parenthesis in a // balanced expression #include <bits/stdc++.h> using namespace std; // Function to find duplicate parenthesis in a // balanced expression bool findDuplicateparenthesis(string str) { // create a stack of characters stack< char > Stack; // Iterate through the given expression for ( char ch : str) { // if current character is close parenthesis ')' if (ch == ')' ) { // pop character from the stack char top = Stack.top(); Stack.pop(); // stores the number of characters between a // closing and opening parenthesis // if this count is less than or equal to 1 // then the brackets are redundant else not int elementsInside = 0; while (top != '(' ) { elementsInside++; top = Stack.top(); Stack.pop(); } if (elementsInside < 1) { return 1; } } // push open parenthesis '(', operators and // operands to stack else Stack.push(ch); } // No duplicates found return false ; } // Driver code int main() { // input balanced expression string str = "(((a+(b))+(c+d)))" ; if (findDuplicateparenthesis(str)) cout << "Duplicate Found " ; else cout << "No Duplicates Found " ; return 0; } |
Java
import java.util.Stack; // Java program to find duplicate parenthesis in a // balanced expression public class GFG { // Function to find duplicate parenthesis in a // balanced expression static boolean findDuplicateparenthesis(String s) { // create a stack of characters Stack<Character> Stack = new Stack<>(); // Iterate through the given expression char [] str = s.toCharArray(); for ( char ch : str) { // if current character is close parenthesis ')' if (ch == ')' ) { // pop character from the stack char top = Stack.peek(); Stack.pop(); // stores the number of characters between a // closing and opening parenthesis // if this count is less than or equal to 1 // then the brackets are redundant else not int elementsInside = 0 ; while (top != '(' ) { elementsInside++; top = Stack.peek(); Stack.pop(); } if (elementsInside < 1 ) { return true ; } } // push open parenthesis '(', operators and // operands to stack else { Stack.push(ch); } } // No duplicates found return false ; } // Driver code public static void main(String[] args) { // input balanced expression String str = "(((a+(b))+(c+d)))" ; if (findDuplicateparenthesis(str)) { System.out.println( "Duplicate Found " ); } else { System.out.println( "No Duplicates Found " ); } } } |
Python3
# Python3 program to find duplicate # parenthesis in a balanced expression # Function to find duplicate parenthesis # in a balanced expression def findDuplicateparenthesis(string): # create a stack of characters Stack = [] # Iterate through the given expression for ch in string: # if current character is # close parenthesis ')' if ch = = ')' : # pop character from the stack top = Stack.pop() # stores the number of characters between # a closing and opening parenthesis # if this count is less than or equal to 1 # then the brackets are redundant else not elementsInside = 0 while top ! = '(' : elementsInside + = 1 top = Stack.pop() if elementsInside < 1 : return True # push open parenthesis '(', operators # and operands to stack else : Stack.append(ch) # No duplicates found return False # Driver Code if __name__ = = "__main__" : # input balanced expression string = "(((a+(b))+(c+d)))" if findDuplicateparenthesis(string) = = True : print ( "Duplicate Found" ) else : print ( "No Duplicates Found" ) # This code is contributed by Rituraj Jain |
C#
// C# program to find duplicate parenthesis // in a balanced expression using System; using System.Collections.Generic; class GFG { // Function to find duplicate parenthesis // in a balanced expression static Boolean findDuplicateparenthesis(String s) { // create a stack of characters Stack< char > Stack = new Stack< char >(); // Iterate through the given expression char [] str = s.ToCharArray(); foreach ( char ch in str) { // if current character is // close parenthesis ')' if (ch == ')' ) { // pop character from the stack char top = Stack.Peek(); Stack.Pop(); // stores the number of characters between // a closing and opening parenthesis // if this count is less than or equal to 1 // then the brackets are redundant else not int elementsInside = 0; while (top != '(' ) { elementsInside++; top = Stack.Peek(); Stack.Pop(); } if (elementsInside < 1) { return true ; } } // push open parenthesis '(', // operators and operands to stack else { Stack.Push(ch); } } // No duplicates found return false ; } // Driver code public static void Main(String[] args) { // input balanced expression String str = "(((a+(b))+(c+d)))" ; if (findDuplicateparenthesis(str)) { Console.WriteLine( "Duplicate Found " ); } else { Console.WriteLine( "No Duplicates Found " ); } } } // This code is contributed by 29AjayKumar |
Javascript
<script> // Javascript program to find duplicate // parenthesis in a balanced expression // Function to find duplicate parenthesis // in a balanced expression function findDuplicateparenthesis(s) { // Create a stack of characters let Stack = []; // Iterate through the given expression let str = s.split( "" ); for (let ch = 0; ch < str.length;ch++) { // If current character is close // parenthesis ')' if (str[ch] == ')' ) { // pop character from the stack let top = Stack.pop(); // Stores the number of characters between a // closing and opening parenthesis // if this count is less than or equal to 1 // then the brackets are redundant else not let elementsInside = 0; while (top != '(' ) { elementsInside++; top = Stack.pop(); } if (elementsInside < 1) { return true ; } } // push open parenthesis '(', operators // and operands to stack else { Stack.push(str[ch]); } } // No duplicates found return false ; } // Driver code let str = "(((a+(b))+(c+d)))" ; // Input balanced expression if (findDuplicateparenthesis(str)) { document.write( "Duplicate Found " ); } else { document.write( "No Duplicates Found " ); } // This code is contributed by rag2127 </script> |
Output:
Duplicate Found
Time complexity of above solution is O(n).
Auxiliary space used by the program is O(n).
This article is contributed by Aditya Goel. If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
Please Login to comment...