Skip to content
Related Articles

Related Articles

Find edges removing which does not disconnect the Graph

View Discussion
Improve Article
Save Article
Like Article
  • Last Updated : 21 Jun, 2022

Given N vertices numbered from 0 to N – 1 and E edges to form an undirected graph. All the edges should be added in the given order. The task is to find the edges removing which do not disconnect the graph. If there are multiple possible edges return the ones which occur later in the sequence.

Examples:

Input: N = 3, E = 3, edges= {{0, 1}, {1, 2}, {0, 2}}

 

Output: 0 2
Explanation:  Removing any one of the edges keep the graph connected.
But (0, 2) comes later in the sequence.

Input: N = 5, E = 7, edges = {{0, 1}, {1, 2}, {2, 3}, {4, 3}, {0, 4}, {4, 1}, {3, 0}}

 

Output: 
0 4
4 1
3 0
Explanation: After removing the edges (0, 4), (4, 1), (3, 0) the graph will still be connected. Hence, these three edges are extra edges. 

 

Approach: This problem can be solved using the concept of disjoint set data structure based on the following idea: 

Keep connecting the edges to each other if they are previously not been connected, if they are already connected then the current edge for sure be an extra edge.

Use disjoint sets to find if the nodes are previously connected or not. If they are connected then connect the edge and union those two sets.

Follow the below steps to solve the problem:

  • Create a parent[] array to store the parent nodes of each node.
  • Create a set of pairs (say ans), to store the answer.
  • Run a loop through the given edges.
    • Check if the vertices of the current edge are already connected or not.
    • If they are connected then store this edge into the ans.
    • Else, connect these two vertices and unite those two disjoint sets (i.e., make their parent same).
  • Return and print ans.

Below is the implementation of the above approach:

C++




// C++ code to implement the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// The required Comparator Function.
int find(int x, vector<int>& parent)
{
    if (x == parent[x]) {
        return x;
    }
    return parent[x]
           = find(parent[x], parent);
}
 
// Function to find extra edges
set<pair<int, int> > extraEdges(int n, int e,
                                vector<vector<int> >& edges)
{
    set<pair<int, int> > ans;
    vector<int> parent(n);
    for (int i = 0; i < n; i++) {
        parent[i] = i;
    }
 
    // Loop through the edges
    for (auto x : edges) {
        int vParent = find(x[0], parent);
        int uParent = find(x[1], parent);
        if (vParent == uParent) {
            pair<int, int> p;
            if (x[0] < x[1]) {
                p = { x[0], x[1] };
            }
            else {
                p = { x[1], x[0] };
            }
            ans.insert(p);
        }
        else {
            parent[vParent] = uParent;
        }
    }
 
    // Return the edges
    return ans;
}
 
// Driver code
int main()
{
    int N = 3, E = 3;
    vector<vector<int> > edges
        = { { 0, 1 }, { 1, 2 }, { 2, 0 }, { 0, 2 } };
    set<pair<int, int> > ans = extraEdges(N,
                                          E, edges);
    for (auto& edge : ans) {
        cout << edge.first << " " << edge.second << "\n";
    }
    return 0;
}


C#




// C# program to implement above approach
using System;
using System.Collections;
using System.Collections.Generic;
 
class GFG
{
 
    // The required Comparator Function.
    static int find(int x, List<int> parent)
    {
        if (x == parent[x]) {
            return x;
        }
        return parent[x] = find(parent[x], parent);
    }
 
    // Function to find extra edges
    static SortedSet<pair> extraEdges(int n, int e, List<List<int>> edges)
    {
        SortedSet<pair> ans = new SortedSet<pair>(new Comp());
        List<int> parent = new List<int>();
        for (int i = 0; i < n; i++) {
            parent.Add(i);
        }
 
        // Loop through the edges
        foreach (List<int> x in edges) {
            int vParent = find(x[0], parent);
            int uParent = find(x[1], parent);
            if (vParent == uParent) {
                pair p = new pair(0, 0);
                if (x[0] < x[1]) {
                    p = new pair(x[0], x[1]);
                }
                else {
                    p = new pair(x[1], x[0]);
                }
                ans.Add(p);
            }
            else {
                parent[vParent] = uParent;
            }
        }
 
        // Return the edges
        return ans;
    }
 
    // Driver Code
    public static void Main(string[] args){
         
        int N = 3, E = 3;
        List<List<int>> edges = new List<List<int>>{
            new List<int>{ 0, 1 },
            new List<int>{ 1, 2 },
            new List<int>{ 2, 0 },
            new List<int>{ 0, 2 }
        };
        SortedSet<pair> ans = extraEdges(N,  E, edges);
        foreach (pair edge in ans) {
            Console.WriteLine(edge.first + " " + edge.second);
        }
 
    }
}
 
public class pair{
    public int first;
    public int  second;
    public pair(int first,int second){
        this.first = first;
        this.second = second;
    }
}
 
class Comp : IComparer<pair>{
    public int Compare(pair o2,pair o1){
        if(o1.first == o2.first){
            return o1.second - o2.second;
        }
        return o1.first - o2.first;
    }
}


Python3




# Python3 code to implement the above approach
 
def find(x,parent):
 
    if (x == parent[x]):
        return x
     
    parent[x] = find(parent[x], parent)
    return parent[x]
 
# Function to find extra edges
def extraEdges(n,e,edges):
 
    ans = set()
    parent = [i for i in range(n)]
 
    # Loop through the edges
    for x in edges:
        vParent = find(x[0], parent)
        uParent = find(x[1], parent)
        if (vParent == uParent):
            p = ()
            if (x[0] < x[1]):
                p = ( x[0], x[1] )
             
            else:
                p = ( x[1], x[0] )
         
            ans.add(p)
        else:
            parent[vParent] = uParent
         
 
    # Return the edges
    return ans
 
# Driver code
 
N,E = 3,3
edges = [ [ 0, 1 ], [ 1, 2 ], [ 2, 0 ], [ 0, 2 ] ]
ans = extraEdges(N, E, edges)
for edge in ans:
    print(f"{edge[0]} {edge[1]}")
 
# This code is contributed by shinjanpatra


Output

0 2

Time Complexity: O(E * log(N))
Auxiliary Space: O(N)


My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!