Find distinct elements common to all rows of a matrix
Given a n x n matrix. The problem is to find all the distinct elements common to all rows of the matrix. The elements can be printed in any order.
Examples:
Input : mat[][] = { {2, 1, 4, 3}, {1, 2, 3, 2}, {3, 6, 2, 3}, {5, 2, 5, 3} } Output : 2 3 Input : mat[][] = { {12, 1, 14, 3, 16}, {14, 2, 1, 3, 35}, {14, 1, 14, 3, 11}, {14, 25, 3, 2, 1}, {1, 18, 3, 21, 14} } Output : 1 3 14
Method 1: Using three nested loops. Check if an element of 1st row is present in all the subsequent rows. Time Complexity of O(n3). Extra space could be required to handle the duplicate elements.
Method 2: Sort all the rows of the matrix individually in increasing order. Then apply a modified approach to the problem of finding common elements in 3 sorted arrays. Below an implementation for the same is given.
C++
// C++ implementation to find distinct elements // common to all rows of a matrix #include <bits/stdc++.h> using namespace std; const int MAX = 100; // function to individually sort // each row in increasing order void sortRows( int mat[][MAX], int n) { for ( int i=0; i<n; i++) sort(mat[i], mat[i] + n); } // function to find all the common elements void findAndPrintCommonElements( int mat[][MAX], int n) { // sort rows individually sortRows(mat, n); // current column index of each row is stored // from where the element is being searched in // that row int curr_index[n]; memset (curr_index, 0, sizeof (curr_index)); int f = 0; for (; curr_index[0]<n; curr_index[0]++) { // value present at the current column index // of 1st row int value = mat[0][curr_index[0]]; bool present = true ; // 'value' is being searched in all the // subsequent rows for ( int i=1; i<n; i++) { // iterate through all the elements of // the row from its current column index // till an element greater than the 'value' // is found or the end of the row is // encountered while (curr_index[i] < n && mat[i][curr_index[i]] <= value) curr_index[i]++; // if the element was not present at the column // before to the 'curr_index' of the row if (mat[i][curr_index[i]-1] != value) present = false ; // if all elements of the row have // been traversed if (curr_index[i] == n) { f = 1; break ; } } // if the 'value' is common to all the rows if (present) cout << value << " " ; // if any row have been completely traversed // then no more common elements can be found if (f == 1) break ; } } // Driver program to test above int main() { int mat[][MAX] = { {12, 1, 14, 3, 16}, {14, 2, 1, 3, 35}, {14, 1, 14, 3, 11}, {14, 25, 3, 2, 1}, {1, 18, 3, 21, 14} }; int n = 5; findAndPrintCommonElements(mat, n); return 0; } |
Java
// JAVA Code to find distinct elements // common to all rows of a matrix import java.util.*; class GFG { // function to individually sort // each row in increasing order public static void sortRows( int mat[][], int n) { for ( int i= 0 ; i<n; i++) Arrays.sort(mat[i]); } // function to find all the common elements public static void findAndPrintCommonElements( int mat[][], int n) { // sort rows individually sortRows(mat, n); // current column index of each row is stored // from where the element is being searched in // that row int curr_index[] = new int [n]; int f = 0 ; for (; curr_index[ 0 ]<n; curr_index[ 0 ]++) { // value present at the current column index // of 1st row int value = mat[ 0 ][curr_index[ 0 ]]; boolean present = true ; // 'value' is being searched in all the // subsequent rows for ( int i= 1 ; i<n; i++) { // iterate through all the elements of // the row from its current column index // till an element greater than the 'value' // is found or the end of the row is // encountered while (curr_index[i] < n && mat[i][curr_index[i]] <= value) curr_index[i]++; // if the element was not present at the // column before to the 'curr_index' of the // row if (mat[i][curr_index[i]- 1 ] != value) present = false ; // if all elements of the row have // been traversed if (curr_index[i] == n) { f = 1 ; break ; } } // if the 'value' is common to all the rows if (present) System.out.print(value+ " " ); // if any row have been completely traversed // then no more common elements can be found if (f == 1 ) break ; } } /* Driver program to test above function */ public static void main(String[] args) { int mat[][] = { { 12 , 1 , 14 , 3 , 16 }, { 14 , 2 , 1 , 3 , 35 }, { 14 , 1 , 14 , 3 , 11 }, { 14 , 25 , 3 , 2 , 1 }, { 1 , 18 , 3 , 21 , 14 } }; int n = 5 ; findAndPrintCommonElements(mat, n); } } // This code is contributed by Arnav Kr. Mandal. |
Python3
# Python3 implementation to find distinct # elements common to all rows of a matrix MAX = 100 # function to individually sort # each row in increasing order def sortRows(mat, n): for i in range ( 0 , n): mat[i].sort(); # function to find all the common elements def findAndPrintCommonElements(mat, n): # sort rows individually sortRows(mat, n) # current column index of each row is # stored from where the element is being # searched in that row curr_index = [ 0 ] * n for i in range ( 0 , n): curr_index[i] = 0 f = 0 while (curr_index[ 0 ] < n): # value present at the current # column index of 1st row value = mat[ 0 ][curr_index[ 0 ]] present = True # 'value' is being searched in # all the subsequent rows for i in range ( 1 , n): # iterate through all the elements # of the row from its current column # index till an element greater than # the 'value' is found or the end of # the row is encountered while (curr_index[i] < n and mat[i][curr_index[i]] < = value): curr_index[i] = curr_index[i] + 1 # if the element was not present at # the column before to the 'curr_index' # of the row if (mat[i][curr_index[i] - 1 ] ! = value): present = False # if all elements of the row have # been traversed) if (curr_index[i] = = n): f = 1 break # if the 'value' is common to all the rows if (present): print (value, end = " " ) # if any row have been completely traversed # then no more common elements can be found if (f = = 1 ): break curr_index[ 0 ] = curr_index[ 0 ] + 1 # Driver Code mat = [[ 12 , 1 , 14 , 3 , 16 ], [ 14 , 2 , 1 , 3 , 35 ], [ 14 , 1 , 14 , 3 , 11 ], [ 14 , 25 , 3 , 2 , 1 ], [ 1 , 18 , 3 , 21 , 14 ]] n = 5 findAndPrintCommonElements(mat, n) # This code is contributed by iAyushRaj |
C#
// C# Code to find distinct elements // common to all rows of a matrix using System; class GFG { // function to individually sort // each row in increasing order public static void sortRows( int [][] mat, int n) { for ( int i = 0; i < n; i++) { Array.Sort(mat[i]); } } // function to find all the common elements public static void findAndPrintCommonElements( int [][] mat, int n) { // sort rows individually sortRows(mat, n); // current column index of each row is stored // from where the element is being searched in // that row int [] curr_index = new int [n]; int f = 0; for (; curr_index[0] < n; curr_index[0]++) { // value present at the current column index // of 1st row int value = mat[0][curr_index[0]]; bool present = true ; // 'value' is being searched in all the // subsequent rows for ( int i = 1; i < n; i++) { // iterate through all the elements of // the row from its current column index // till an element greater than the 'value' // is found or the end of the row is // encountered while (curr_index[i] < n && mat[i][curr_index[i]] <= value) { curr_index[i]++; } // if the element was not present at the column // before to the 'curr_index' of the row if (mat[i][curr_index[i] - 1] != value) { present = false ; } // if all elements of the row have // been traversed if (curr_index[i] == n) { f = 1; break ; } } // if the 'value' is common to all the rows if (present) { Console.Write(value + " " ); } // if any row have been completely traversed // then no more common elements can be found if (f == 1) { break ; } } } // Driver Code public static void Main( string [] args) { int [][] mat = new int [][] { new int [] {12, 1, 14, 3, 16}, new int [] {14, 2, 1, 3, 35}, new int [] {14, 1, 14, 3, 11}, new int [] {14, 25, 3, 2, 1}, new int [] {1, 18, 3, 21, 14} }; int n = 5; findAndPrintCommonElements(mat, n); } } // This code is contributed by Shrikant13 |
Javascript
<script> // JavaScript Code to find distinct elements // common to all rows of a matrix // function to individually sort // each row in increasing order function sortRows(mat,n) { for (let i=0; i<n; i++) mat[i].sort( function (a,b){ return a-b;}); } // function to find all the common elements function findAndPrintCommonElements(mat,n) { // sort rows individually sortRows(mat, n); // current column index of each row is stored // from where the element is being searched in // that row let curr_index = new Array(n); for (let i=0;i<n;i++) { curr_index[i]=0; } let f = 0; for (; curr_index[0]<n; curr_index[0]++) { // value present at the current column index // of 1st row let value = mat[0][curr_index[0]]; let present = true ; // 'value' is being searched in all the // subsequent rows for (let i=1; i<n; i++) { // iterate through all the elements of // the row from its current column index // till an element greater than the 'value' // is found or the end of the row is // encountered while (curr_index[i] < n && mat[i][curr_index[i]] <= value) curr_index[i]++; // if the element was not present at the // column before to the 'curr_index' of the // row if (mat[i][curr_index[i]-1] != value) present = false ; // if all elements of the row have // been traversed if (curr_index[i] == n) { f = 1; break ; } } // if the 'value' is common to all the rows if (present) document.write(value+ " " ); // if any row have been completely traversed // then no more common elements can be found if (f == 1) break ; } } /* Driver program to test above function */ let mat = [[12, 1, 14, 3, 16], [14, 2, 1, 3, 35], [14, 1, 14, 3, 11], [14, 25, 3, 2, 1], [1, 18, 3, 21, 14]] let n = 5; findAndPrintCommonElements(mat, n); // This code is contributed by patel2127 </script> |
1 3 14
Time Complexity: O(n2log n), each row of size n requires O(nlogn) for sorting and there are total n rows.
Auxiliary Space: O(n) to store current column indexes for each row.
Method 3: It uses the concept of hashing. The following steps are:
- Map the element of the 1st row in a hash table. Let it be hash.
- Fow row = 2 to n
- Map each element of the current row into a temporary hash table. Let it be temp.
- Iterate through the elements of hash and check that the elements in hash are present in temp. If not present then delete those elements from hash.
- When all the rows are being processed in this manner, then the elements left in hash are the required common elements.
C++
// C++ program to find distinct elements // common to all rows of a matrix #include <bits/stdc++.h> using namespace std; const int MAX = 100; // function to individually sort // each row in increasing order void findAndPrintCommonElements( int mat[][MAX], int n){ unordered_set< int > us; // map elements of first row // into 'us' for ( int i=0; i<n; i++) us.insert(mat[0][i]); for ( int i=1; i<n; i++){ unordered_set< int > temp; unordered_set< int > common; // mapping elements of current row // in 'temp' for ( int j=0; j<n; j++) temp.insert(mat[i][j]); // find common elements between 'us' and 'temp' for ( auto itr : us) if (temp.find(itr) != temp.end()) common.insert(itr); // update 'us' with common elements us = common; // if size of 'us' becomes 0, // then there are no common elements if (us.size() == 0) break ; } // print the common elements for ( auto itr : us) cout << itr << " " ; } // Driver program to test above int main(){ int mat[][MAX] = { {2, 1, 4, 3}, {1, 2, 3, 2}, {3, 6, 2, 3}, {5, 2, 5, 3} }; int n = 4; findAndPrintCommonElements(mat, n); return 0; } |
Java
// Java program to find distinct elements // common to all rows of a matrix import java.util.*; class GFG{ static int MAX = 100 ; // function to individually sort // each row in increasing order @SuppressWarnings ( "unchecked" ) static void findAndPrintCommonElements( int mat[][], int n) { HashSet<Integer> us = new HashSet<Integer>(); // map elements of first row // into 'us' for ( int i = 0 ; i < n; i++) us.add(mat[ 0 ][i]); for ( int i = 1 ; i < n; i++) { HashSet<Integer> temp = new HashSet<Integer>(); // mapping elements of current row // in 'temp' for ( int j = 0 ; j < n; j++) temp.add(mat[i][j]); HashSet<Integer> itr=(HashSet<Integer>) us.clone(); // iterate through all the elements // of 'us' for ( int x :itr) // if an element of 'us' is not present // into 'temp', then erase that element // from 'us' if (!temp.contains(x)) us.remove(x); // if size of 'us' becomes 0, // then there are no common elements if (us.size() == 0 ) break ; } // print the common elements HashSet<Integer> itr1=(HashSet<Integer>) us.clone(); for ( int x :itr1) System.out.print(x+ " " ); } // Driver program to test above public static void main(String[] args) { int mat[][] = { { 2 , 1 , 4 , 3 }, { 1 , 2 , 3 , 2 }, { 3 , 6 , 2 , 3 }, { 5 , 2 , 5 , 3 } }; int n = 4 ; findAndPrintCommonElements(mat, n); } } // This code is contributed by shikhasingrajput |
Python3
# Python3 program to find distinct elements # common to all rows of a matrix MAX = 100 # function to individually sort # each row in increasing order def findAndPrintCommonElements(mat, n): us = dict () # map elements of first row # into 'us' for i in range (n): us[(mat[ 0 ][i])] = 1 for i in range ( 1 , n): temp = dict () # mapping elements of current row # in 'temp' for j in range (n): temp[(mat[i][j])] = 1 # iterate through all the elements # of 'us' for itr in list (us): # if an element of 'us' is not present # into 'temp', then erase that element # from 'us' if itr not in temp: del us[itr] # if size of 'us' becomes 0, # then there are no common elements if ( len (us) = = 0 ): break # print common elements for itr in list (us)[:: - 1 ]: print (itr, end = " " ) # Driver Code mat = [[ 2 , 1 , 4 , 3 ], [ 1 , 2 , 3 , 2 ], [ 3 , 6 , 2 , 3 ], [ 5 , 2 , 5 , 3 ]] n = 4 findAndPrintCommonElements(mat, n) # This code is contributed by Mohit Kumar |
C#
// C# program to find distinct elements // common to all rows of a matrix using System; using System.Collections.Generic; public class GFG{ static int MAX = 100; // function to individually sort // each row in increasing order static void findAndPrintCommonElements( int [,]mat, int n) { HashSet< int > us = new HashSet< int >(); // map elements of first row // into 'us' for ( int i = 0; i < n; i++) us.Add(mat[0, i]); for ( int i = 1; i < n; i++) { HashSet< int > temp = new HashSet< int >(); // mapping elements of current row // in 'temp' for ( int j = 0; j < n; j++) temp.Add(mat[i,j]); HashSet< int > itr= new HashSet< int >(us); // iterate through all the elements // of 'us' foreach ( int x in itr) // if an element of 'us' is not present // into 'temp', then erase that element // from 'us' if (!temp.Contains(x)) us.Remove(x); // if size of 'us' becomes 0, // then there are no common elements if (us.Count == 0) break ; } // print the common elements HashSet< int > itr1= new HashSet< int >(us); foreach ( int x in itr1) Console.Write(x+ " " ); } // Driver program to test above public static void Main(String[] args) { int [,]mat = { {2, 1, 4, 3}, {1, 2, 3, 2}, {3, 6, 2, 3}, {5, 2, 5, 3} }; int n = 4; findAndPrintCommonElements(mat, n); } } // This code is contributed by shikhasingrajput |
Javascript
// Javascript program to find distinct elements // common to all rows of a matrix var MAX = 100; // function to individually sort // each row in increasing order function findAndPrintCommonElements(mat, n) { var us = new Set(); // map elements of first row // into 'us' for ( var i = 0; i < n; i++) us.add(mat[0][i]); for ( var i = 1; i < n; i++) { var temp = new Set(); // mapping elements of current row // in 'temp' for ( var j = 0; j < n; j++) temp.add(mat[i][j]); // iterate through all the elements // of 'us' for ( var itr of us) { // if an element of 'us' is not present // into 'temp', then erase that element // from 'us' if (!temp.has(itr)) us. delete (itr); } // if size of 'us' becomes 0, // then there are no common elements if (us.size == 0) break ; } // print the common elements for ( var itr of [...us].sort((a,b)=>b-a)) document.write( itr + " " ); } // Driver program to test above var mat = [ [2, 1, 4, 3], [1, 2, 3, 2], [3, 6, 2, 3], [5, 2, 5, 3]]; var n = 4; findAndPrintCommonElements(mat, n); // This code is contributed by noob2000. |
Output:
3 2
Time Complexity: O(n2)
Space Complexity: O(n), since n extra space has been taken.
Method 4: Using Map
- Insert all the elements of the 1st row in the map.
- Now we check that the elements present in the map are present in each row or not.
- If the element is present in the map and is not duplicated in the current row, then we increment the count of the element in the map by 1.
- If we reach the last row while traversing and if the element appears (N-1) times before then we print the element.
C++
// C++ program to find distinct elements // common to all rows of a matrix #include <bits/stdc++.h> using namespace std; const int MAX = 100; // function to individually sort // each row in increasing order void distinct( int mat[][MAX], int N) { // make an empty map unordered_map< int , int > ans; // Insert the elements of // first row in the map and // initialize with 1 for ( int j = 0; j < N; j++) { ans[(mat[0][j])]=1; } // Traverse the matrix from 2nd row for ( int i = 1; i < N; i++) { for ( int j = 0; j < N; j++) { // If the element is present in the map // and is not duplicated in the current row if (ans[(mat[i][j])] != 0 && ans[(mat[i][j])] == i) { // Increment count of the element in // map by 1 ans[(mat[i][j])]= i + 1; // If we have reached the last row if (i == N - 1) { // Print the element cout<<mat[i][j]<< " " ; } } } } } // Driver program to test above int main() { int N=4; int mat[][MAX] = { {2, 1, 4, 3}, {1, 2, 3, 2}, {3, 6, 2, 3}, {5, 2, 5, 3} }; distinct(mat, N); return 0; } // This code is Contributed by Aarti_Rathi |
Java
// JAVA Code to find distinct elements // common to all rows of a matrix import java.io.*; import java.util.*; class GFG { static void distinct( int matrix[][], int N) { // make a empty map Map<Integer, Integer> ans = new HashMap<>(); // Insert the elements of // first row in the map and // initialize with 1 for ( int j = 0 ; j < N; j++) { ans.put(matrix[ 0 ][j], 1 ); } // Traverse the matrix from 2nd row for ( int i = 1 ; i < N; i++) { for ( int j = 0 ; j < N; j++) { // If the element is present in the map // and is not duplicated in the current row if (ans.get(matrix[i][j]) != null && ans.get(matrix[i][j]) == i) { // Increment count of the element in // map by 1 ans.put(matrix[i][j], i + 1 ); // If we have reached the last row if (i == N - 1 ) { // Print the element System.out.print(matrix[i][j] + " " ); } } } } } /* Driver program to test above function */ public static void main(String[] args) { int matrix[][] = { { 2 , 1 , 4 , 3 }, { 1 , 2 , 3 , 2 }, { 3 , 6 , 2 , 3 }, { 5 , 2 , 5 , 3 } }; int n = 4 ; distinct(matrix, n); } } // This code is Contributed by Darshit Shukla |
Python3
# Python code to find distinct elements # common to all rows of a matrix def distinct(matrix, N): # Make a empty map ans = {} # Insert the elements of # first row in the map and # initialize with 1 for j in range (N): ans[(matrix[ 0 ][j])] = 0 # Traverse the matrix from 2nd row for i in range (N): for j in range (N): # If the element is present in the map # and is not duplicated in the current row if matrix[i][j] in ans and ans[(matrix[i][j])] = = i: # Increment count of the element in # map by 1 ans[(matrix[i][j])] = i + 1 # If we have reached the last row if (i = = N - 1 ): # Print the element print (matrix[i][j],end = " " ) # Driver code matrix = [ [ 2 , 1 , 4 , 3 ], [ 1 , 2 , 3 , 2 ], [ 3 , 6 , 2 , 3 ], [ 5 , 2 , 5 , 3 ] ] n = 4 distinct(matrix, n) # This code is contributed by shinjanpatra |
C#
// C# code to find distinct elements // common to all rows of a matrix using System; using System.Collections.Generic; class GFG{ static void distinct( int [,] matrix, int N) { // Make a empty map Dictionary< int , int > ans = new Dictionary< int , int >(); // Insert the elements of // first row in the map and // initialize with 1 for ( int j = 0; j < N; j++) { ans[(matrix[0, j])] = 1; } // Traverse the matrix from 2nd row for ( int i = 1; i < N; i++) { for ( int j = 0; j < N; j++) { // If the element is present in the map // and is not duplicated in the current row if (ans.ContainsKey(matrix[i, j]) && ans[(matrix[i, j])] == i) { // Increment count of the element in // map by 1 ans[(matrix[i, j])] = i + 1; // If we have reached the last row if (i == N - 1) { // Print the element Console.Write(matrix[i, j] + " " ); } } } } } // Driver code public static void Main( string [] args) { int [,] matrix = { { 2, 1, 4, 3 }, { 1, 2, 3, 2 }, { 3, 6, 2, 3 }, { 5, 2, 5, 3 } }; int n = 4; distinct(matrix, n); } } // This code is contributed by ukasp |
Javascript
<script> // Javascript code to find distinct elements // common to all rows of a matrix function distinct(matrix, N) { // Make a empty map var ans = new Map() // Insert the elements of // first row in the map and // initialize with 1 for ( var j = 0; j < N; j++) { ans.set(matrix[0][j], 1); } // Traverse the matrix from 2nd row for ( var i = 1; i < N; i++) { for ( var j = 0; j < N; j++) { // If the element is present in the map // and is not duplicated in the current row if (ans.has(matrix[i][j]) && ans.get(matrix[i][j]) == i) { // Increment count of the element in // map by 1 ans.set(matrix[i][j], i + 1); // If we have reached the last row if (i == N - 1) { // Print the element document.write(matrix[i][j] + " " ); } } } } } // Driver code var matrix = [ [ 2, 1, 4, 3 ], [ 1, 2, 3, 2 ], [ 3, 6, 2, 3 ], [ 5, 2, 5, 3 ] ]; var n = 4; distinct(matrix, n); // This code is contributed by rutvik_56. </script> |
2 3
Time Complexity: O(n2)
Space Complexity: O(n)
This article is contributed by Ayush Jauhari. If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
Please Login to comment...