Find common elements in three sorted arrays
Given three arrays sorted in non-decreasing order, print all common elements in these arrays.
Examples:
Input:
ar1[] = {1, 5, 10, 20, 40, 80}
ar2[] = {6, 7, 20, 80, 100}
ar3[] = {3, 4, 15, 20, 30, 70, 80, 120}
Output: 20, 80Input:
ar1[] = {1, 5, 5}
ar2[] = {3, 4, 5, 5, 10}
ar3[] = {5, 5, 10, 20}
Output: 5, 5
A simple solution is to first find intersection of two arrays and store the intersection in a temporary array, then find the intersection of third array and temporary array.
Time complexity of this solution is O(n1 + n2 + n3) where n1, n2 and n3 are sizes of ar1[], ar2[] and ar3[] respectively.
The above solution requires extra space and two loops, we can find the common elements using a single loop and without extra space. The idea is similar to intersection of two arrays. Like two arrays loop, we run a loop and traverse three arrays.
Let the current element traversed in ar1[] be x, in ar2[] be y and in ar3[] be z. We can have following cases inside the loop.
- If x, y and z are same, we can simply print any of them as common element and move ahead in all three arrays.
- Else If x < y, we can move ahead in ar1[] as x cannot be a common element.
- Else If x > z and y > z), we can simply move ahead in ar3[] as z cannot be a common element.
Below image is a dry run of the above approach:
Below is the implementation of the above approach:
C++
// C++ program to print common elements in three arrays #include <bits/stdc++.h> using namespace std; // This function prints common elements in ar1 void findCommon( int ar1[], int ar2[], int ar3[], int n1, int n2, int n3) { // Initialize starting indexes for ar1[], ar2[] and // ar3[] int i = 0, j = 0, k = 0; // Iterate through three arrays while all arrays have // elements while (i < n1 && j < n2 && k < n3) { // If x = y and y = z, print any of them and move // ahead in all arrays if (ar1[i] == ar2[j] && ar2[j] == ar3[k]) { cout << ar1[i] << " " ; i++; j++; k++; } // x < y else if (ar1[i] < ar2[j]) i++; // y < z else if (ar2[j] < ar3[k]) j++; // We reach here when x > y and z < y, i.e., z is // smallest else k++; } } // Driver code int main() { int ar1[] = { 1, 5, 10, 20, 40, 80 }; int ar2[] = { 6, 7, 20, 80, 100 }; int ar3[] = { 3, 4, 15, 20, 30, 70, 80, 120 }; int n1 = sizeof (ar1) / sizeof (ar1[0]); int n2 = sizeof (ar2) / sizeof (ar2[0]); int n3 = sizeof (ar3) / sizeof (ar3[0]); cout << "Common Elements are " ; findCommon(ar1, ar2, ar3, n1, n2, n3); return 0; } // This code is contributed by Sania Kumari Gupta (kriSania804) |
C
// C program to print common elements in three arrays #include <stdio.h> // This function prints common elements in ar1 void findCommon( int ar1[], int ar2[], int ar3[], int n1, int n2, int n3) { // Initialize starting indexes for ar1[], ar2[] and // ar3[] int i = 0, j = 0, k = 0; // Iterate through three arrays while all arrays have // elements while (i < n1 && j < n2 && k < n3) { // If x = y and y = z, print any of them and move // ahead in all arrays if (ar1[i] == ar2[j] && ar2[j] == ar3[k]) { printf ( "%d " , ar1[i]); i++; j++; k++; } // x < y else if (ar1[i] < ar2[j]) i++; // y < z else if (ar2[j] < ar3[k]) j++; // We reach here when x > y and z < y, i.e., z is // smallest else k++; } } // Driver code int main() { int ar1[] = { 1, 5, 10, 20, 40, 80 }; int ar2[] = { 6, 7, 20, 80, 100 }; int ar3[] = { 3, 4, 15, 20, 30, 70, 80, 120 }; int n1 = sizeof (ar1) / sizeof (ar1[0]); int n2 = sizeof (ar2) / sizeof (ar2[0]); int n3 = sizeof (ar3) / sizeof (ar3[0]); printf ( "Common Elements are " ); findCommon(ar1, ar2, ar3, n1, n2, n3); return 0; } // This code is contributed by Sania Kumari Gupta // (kriSania804) |
Java
// Java program to find common elements in three arrays import java.io.*; class FindCommon { // This function prints common elements in ar1 void findCommon( int ar1[], int ar2[], int ar3[]) { // Initialize starting indexes for ar1[], ar2[] and // ar3[] int i = 0 , j = 0 , k = 0 ; // Iterate through three arrays while all arrays // have elements while (i < ar1.length && j < ar2.length && k < ar3.length) { // If x = y and y = z, print any of them and // move ahead in all arrays if (ar1[i] == ar2[j] && ar2[j] == ar3[k]) { System.out.print(ar1[i] + " " ); i++; j++; k++; } // x < y else if (ar1[i] < ar2[j]) i++; // y < z else if (ar2[j] < ar3[k]) j++; // We reach here when x > y and z < y, i.e., z // is smallest else k++; } } // Driver code to test above public static void main(String args[]) { FindCommon ob = new FindCommon(); int ar1[] = { 1 , 5 , 10 , 20 , 40 , 80 }; int ar2[] = { 6 , 7 , 20 , 80 , 100 }; int ar3[] = { 3 , 4 , 15 , 20 , 30 , 70 , 80 , 120 }; System.out.print( "Common elements are " ); ob.findCommon(ar1, ar2, ar3); } } /*This code is contributed by Rajat Mishra */ |
Python
# Python function to print common elements in three sorted arrays def findCommon(ar1, ar2, ar3, n1, n2, n3): # Initialize starting indexes for ar1[], ar2[] and ar3[] i, j, k = 0 , 0 , 0 # Iterate through three arrays while all arrays have elements while (i < n1 and j < n2 and k < n3): # If x = y and y = z, print any of them and move ahead # in all arrays if (ar1[i] = = ar2[j] and ar2[j] = = ar3[k]): print ar1[i], i + = 1 j + = 1 k + = 1 # x < y elif ar1[i] < ar2[j]: i + = 1 # y < z elif ar2[j] < ar3[k]: j + = 1 # We reach here when x > y and z < y, i.e., z is smallest else : k + = 1 # Driver program to check above function ar1 = [ 1 , 5 , 10 , 20 , 40 , 80 ] ar2 = [ 6 , 7 , 20 , 80 , 100 ] ar3 = [ 3 , 4 , 15 , 20 , 30 , 70 , 80 , 120 ] n1 = len (ar1) n2 = len (ar2) n3 = len (ar3) print "Common elements are" , findCommon(ar1, ar2, ar3, n1, n2, n3) # This code is contributed by __Devesh Agrawal__ |
C#
// C# program to find common elements in // three arrays using System; class GFG { // This function prints common element // s in ar1 static void findCommon( int [] ar1, int [] ar2, int [] ar3) { // Initialize starting indexes for // ar1[], ar2[] and ar3[] int i = 0, j = 0, k = 0; // Iterate through three arrays while // all arrays have elements while (i < ar1.Length && j < ar2.Length && k < ar3.Length) { // If x = y and y = z, print any of // them and move ahead in all arrays if (ar1[i] == ar2[j] && ar2[j] == ar3[k]) { Console.Write(ar1[i] + " " ); i++; j++; k++; } // x < y else if (ar1[i] < ar2[j]) i++; // y < z else if (ar2[j] < ar3[k]) j++; // We reach here when x > y and // z < y, i.e., z is smallest else k++; } } // Driver code to test above public static void Main() { int [] ar1 = { 1, 5, 10, 20, 40, 80 }; int [] ar2 = { 6, 7, 20, 80, 100 }; int [] ar3 = { 3, 4, 15, 20, 30, 70, 80, 120 }; Console.Write( "Common elements are " ); findCommon(ar1, ar2, ar3); } } // This code is contributed by Sam007. |
PHP
<?php // PHP program to print common elements // in three arrays // This function prints common elements // in ar1 function findCommon( $ar1 , $ar2 , $ar3 , $n1 , $n2 , $n3 ) { // Initialize starting indexes for // ar1[], ar2[] and ar3[] $i = 0; $j = 0; $k = 0; // Iterate through three arrays while // all arrays have elements while ( $i < $n1 && $j < $n2 && $k < $n3 ) { // If x = y and y = z, print any // of them and move ahead in all // arrays if ( $ar1 [ $i ] == $ar2 [ $j ] && $ar2 [ $j ] == $ar3 [ $k ]) { echo $ar1 [ $i ] , " " ; $i ++; $j ++; $k ++; } // x < y else if ( $ar1 [ $i ] < $ar2 [ $j ]) $i ++; // y < z else if ( $ar2 [ $j ] < $ar3 [ $k ]) $j ++; // We reach here when x > y and // z < y, i.e., z is smallest else $k ++; } } // Driver program to test above function $ar1 = array (1, 5, 10, 20, 40, 80); $ar2 = array (6, 7, 20, 80, 100); $ar3 = array (3, 4, 15, 20, 30, 70, 80, 120); $n1 = count ( $ar1 ); $n2 = count ( $ar2 ); $n3 = count ( $ar3 ); echo "Common Elements are " ; findCommon( $ar1 , $ar2 , $ar3 , $n1 , $n2 , $n3 ); // This code is contributed by anuj_67. ?> |
Javascript
<script> // JavaScript program to print // common elements in three arrays // This function prints common elements in ar1 function findCommon(ar1, ar2, ar3, n1, n2, n3) { // Initialize starting indexes // for ar1[], ar2[] and ar3[] var i = 0, j = 0, k = 0; // Iterate through three arrays // while all arrays have elements while (i < n1 && j < n2 && k < n3) { // If x = y and y = z, print any of them and move ahead // in all arrays if (ar1[i] == ar2[j] && ar2[j] == ar3[k]) { document.write(ar1[i] + " " ); i++; j++; k++; } // x < y else if (ar1[i] < ar2[j]) i++; // y < z else if (ar2[j] < ar3[k]) j++; // We reach here when x > y and z < y, i.e., z is smallest else k++; } } // Driver code var ar1 = [1, 5, 10, 20, 40, 80]; var ar2 = [6, 7, 20, 80, 100]; var ar3 = [3, 4, 15, 20, 30, 70, 80, 120]; var n1 = ar1.length; var n2 = ar2.length; var n3 = ar3.length; document.write( "Common Elements are " ); findCommon(ar1, ar2, ar3, n1, n2, n3); // This code is contributed by rdtank. </script> |
Common Elements are 20 80
Time complexity of the above solution is O(n1 + n2 + n3). In the worst case, the largest sized array may have all small elements and middle-sized array has all middle elements.
Auxiliary Space: O(1)
Method 2:
The approach used above works well if the arrays does not contain duplicate values however it can fail in cases where the array elements are repeated. This can lead to a single common element to get printed multiple times.
These duplicate entries can be handled without using any additional data structure by keeping the track of the previous element. Since the elements inside the array are arranged in sorted manner there is no possibility for the repeated elements to occur at random positions.
Let’s consider the current element traversed in ar1[] be x, in ar2[] be y and in ar3[] be z and let the variables prev1, prev2, prev3 for keeping the track of last encountered element in each array and initialize them with INT_MIN. Hence for every element we visit across each array, we check for the following.
- If x = prev1, move ahead in ar1[] and repeat the procedure until x != prev1. Similarly, apply the same for the ar2[] and ar3[].
- If x, y, and z are same, we can simply print any of them as common element, update prev1, prev2, and prev3 and move ahead in all three arrays.
- Else If (x < y), we update prev1 and move ahead in ar1[] as x cannot be a common element.
- Else If (y < z), we update prev2 and move ahead in ar2[] as y cannot be a common element.
- Else If (x > z and y > z), we update prev3 and we move ahead in ar3[] as z cannot be a common element.
Below is the implementation of the above approach:
C++
// C++ program to print common elements in three arrays #include <bits/stdc++.h> using namespace std; // This function prints common elements in ar1 void findCommon( int ar1[], int ar2[], int ar3[], int n1, int n2, int n3) { // Initialize starting indexes for ar1[], ar2[] and ar3[] int i = 0, j = 0, k = 0; // Declare three variables prev1, prev2, prev3 to track // previous element int prev1, prev2, prev3; // Initialize prev1, prev2, prev3 with INT_MIN prev1 = prev2 = prev3 = INT_MIN; // Iterate through three arrays while all arrays have // elements while (i < n1 && j < n2 && k < n3) { // If ar1[i] = prev1 and i < n1, keep incrementing i while (ar1[i] == prev1 && i < n1) i++; // If ar2[j] = prev2 and j < n2, keep incrementing j while (ar2[j] == prev2 && j < n2) j++; // If ar3[k] = prev3 and k < n3, keep incrementing k while (ar3[k] == prev3 && k < n3) k++; // If x = y and y = z, print any of them, update // prev1 prev2, prev3 and move ahead in each array if (ar1[i] == ar2[j] && ar2[j] == ar3[k]) { cout << ar1[i] << " " ; prev1 = ar1[i++]; prev2 = ar2[j++]; prev3 = ar3[k++]; } // If x < y, update prev1 and increment i else if (ar1[i] < ar2[j]) prev1 = ar1[i++]; // If y < z, update prev2 and increment j else if (ar2[j] < ar3[k]) prev2 = ar2[j++]; // We reach here when x > y and z < y, i.e., z is // smallest update prev3 and increment k else prev3 = ar3[k++]; } } // Driver code int main() { int ar1[] = { 1, 5, 10, 20, 40, 80, 80 }; int ar2[] = { 6, 7, 20, 80, 80, 100 }; int ar3[] = { 3, 4, 15, 20, 30, 70, 80, 80, 120 }; int n1 = sizeof (ar1) / sizeof (ar1[0]); int n2 = sizeof (ar2) / sizeof (ar2[0]); int n3 = sizeof (ar3) / sizeof (ar3[0]); cout << "Common Elements are " ; findCommon(ar1, ar2, ar3, n1, n2, n3); return 0; } // This code is contributed by Aditya Kumar (adityakumar129) |
C
// C program to print common elements in three arrays #include <limits.h> #include <stdio.h> // This function prints common elements in ar1 void findCommon( int ar1[], int ar2[], int ar3[], int n1, int n2, int n3) { // Initialize starting indexes for ar1[], ar2[] and ar3[] int i = 0, j = 0, k = 0; // Declare three variables prev1, prev2, prev3 to track // previous element int prev1, prev2, prev3; // Initialize prev1, prev2, prev3 with INT_MIN prev1 = prev2 = prev3 = INT_MIN; // Iterate through three arrays while all arrays have // elements while (i < n1 && j < n2 && k < n3) { // If ar1[i] = prev1 and i < n1, keep incrementing i while (ar1[i] == prev1 && i < n1) i++; // If ar2[j] = prev2 and j < n2, keep incrementing j while (ar2[j] == prev2 && j < n2) j++; // If ar3[k] = prev3 and k < n3, keep incrementing k while (ar3[k] == prev3 && k < n3) k++; // If x = y and y = z, print any of them, update // prev1 prev2, prev3 and move ahead in each array if (ar1[i] == ar2[j] && ar2[j] == ar3[k]) { printf ( "%d " , ar1[i]); prev1 = ar1[i++]; prev2 = ar2[j++]; prev3 = ar3[k++]; } // If x < y, update prev1 and increment i else if (ar1[i] < ar2[j]) prev1 = ar1[i++]; // If y < z, update prev2 and increment j else if (ar2[j] < ar3[k]) prev2 = ar2[j++]; // We reach here when x > y and z < y, i.e., z is // smallest update prev3 and increment k else prev3 = ar3[k++]; } } // Driver code int main() { int ar1[] = { 1, 5, 10, 20, 40, 80, 80 }; int ar2[] = { 6, 7, 20, 80, 80, 100 }; int ar3[] = { 3, 4, 15, 20, 30, 70, 80, 80, 120 }; int n1 = sizeof (ar1) / sizeof (ar1[0]); int n2 = sizeof (ar2) / sizeof (ar2[0]); int n3 = sizeof (ar3) / sizeof (ar3[0]); printf ( "Common Elements are " ); findCommon(ar1, ar2, ar3, n1, n2, n3); return 0; } // This code is contributed by Aditya Kumar (adityakumar129) |
Java
// Java program to find common // elements in three arrays import java.io.*; class FindCommon { // This function prints common elements in ar1 void findCommon( int ar1[], int ar2[], int ar3[]) { // Initialize starting indexes for ar1[], // ar2[] and ar3[] int i = 0 , j = 0 , k = 0 ; int n1 = ar1.length; int n2 = ar2.length; int n3 = ar3.length; // Declare three variables prev1, // prev2, prev3 to track previous // element int prev1, prev2, prev3; // Initialize prev1, prev2, // prev3 with INT_MIN prev1 = prev2 = prev3 = Integer.MIN_VALUE; while (i < n1 && j < n2 && k < n3) { // If ar1[i] = prev1 and i < n1, // keep incrementing i while (i < n1 && ar1[i] == prev1) i++; // If ar2[j] = prev2 and j < n2, // keep incrementing j while (j < n2 && ar2[j] == prev2) j++; // If ar3[k] = prev3 and k < n3, // keep incrementing k while (k < n3 && ar3[k] == prev3) k++; if (i < n1 && j < n2 && k < n3) { // If x = y and y = z, print any of // them, update prev1 prev2, prev3 // and move ahead in each array if (ar1[i] == ar2[j] && ar2[j] == ar3[k]) { System.out.print(ar1[i] + " " ); prev1 = ar1[i]; prev2 = ar2[j]; prev3 = ar3[k]; i++; j++; k++; } // If x < y, update prev1 // and increment i else if (ar1[i] < ar2[j]) { prev1 = ar1[i]; i++; } // If y < z, update prev2 // and increment j else if (ar2[j] < ar3[k]) { prev2 = ar2[j]; j++; } // We reach here when x > y // and z < y, i.e., z is // smallest update prev3 // and increment k else { prev3 = ar3[k]; k++; } } } } // Driver code public static void main(String args[]) { FindCommon ob = new FindCommon(); int ar1[] = { 1 , 5 , 10 , 20 , 40 , 80 , 80 }; int ar2[] = { 6 , 7 , 20 , 80 , 80 , 100 }; int ar3[] = { 3 , 4 , 15 , 20 , 30 , 70 , 80 , 80 , 120 }; System.out.print( "Common elements are " ); ob.findCommon(ar1, ar2, ar3); } } // This code is contributed by rajsanghavi9. |
Python3
# Python 3 program for above approach import sys # This function prints # common elements in ar1 def findCommon(ar1, ar2, ar3, n1, n2, n3): # Initialize starting indexes # for ar1[], ar2and # ar3[] i = 0 j = 0 k = 0 # Declare three variables prev1, # prev2, prev3 to track # previous element # Initialize prev1, prev2, # prev3 with INT_MIN prev1 = prev2 = prev3 = - sys.maxsize - 1 # Iterate through three arrays # while all arrays have # elements while (i < n1 and j < n2 and k < n3): # If ar1[i] = prev1 and i < n1, # keep incrementing i while (ar1[i] = = prev1 and i < n1 - 1 ): i + = 1 # If ar2[j] = prev2 and j < n2, # keep incrementing j while (ar2[j] = = prev2 and j < n2): j + = 1 # If ar3[k] = prev3 and k < n3, # keep incrementing k while (ar3[k] = = prev3 and k < n3): k + = 1 # If x = y and y = z, pr # any of them, update # prev1 prev2, prev3 and move # ahead in each array if (ar1[i] = = ar2[j] and ar2[j] = = ar3[k]): print (ar1[i], end = " " ) prev1 = ar1[i] prev2 = ar2[j] prev3 = ar3[k] i + = 1 j + = 1 k + = 1 # If x < y, update prev1 # and increment i elif (ar1[i] < ar2[j]): prev1 = ar1[i] i + = 1 # If y < z, update prev2 # and increment j elif (ar2[j] < ar3[k]): prev2 = ar2[j] j + = 1 # We reach here when x > y # and z < y, i.e., z is # smallest update prev3 # and increment k else : prev3 = ar3[k] k + = 1 # Driver code ar1 = [ 1 , 5 , 10 , 20 , 40 , 80 , 80 ] ar2 = [ 6 , 7 , 20 , 80 , 80 , 100 ] ar3 = [ 3 , 4 , 15 , 20 , 30 , 70 , 80 , 80 , 120 ] n1 = len (ar1) n2 = len (ar2) n3 = len (ar3) print ( "Common Elements are " ) findCommon(ar1, ar2, ar3, n1, n2, n3) # This code is contributed by splevel62. |
C#
// C# program to find common // elements in three arrays using System; class GFG { // This function prints common elements in ar1 static void findCommon( int [] ar1, int [] ar2, int [] ar3) { // Initialize starting indexes for ar1[], // ar2[] and ar3[] int i = 0, j = 0, k = 0; int n1 = ar1.Length; int n2 = ar2.Length; int n3 = ar3.Length; // Declare three variables prev1, // prev2, prev3 to track previous // element int prev1, prev2, prev3; // Initialize prev1, prev2, // prev3 with INT_MIN prev1 = prev2 = prev3 = Int32.MinValue; while (i < n1 && j < n2 && k < n3) { // If ar1[i] = prev1 and i < n1, // keep incrementing i while (i < n1 && ar1[i] == prev1) i++; // If ar2[j] = prev2 and j < n2, // keep incrementing j while (j < n2 && ar2[j] == prev2) j++; // If ar3[k] = prev3 and k < n3, // keep incrementing k while (k < n3 && ar3[k] == prev3) k++; if (i < n1 && j < n2 && k < n3) { // If x = y and y = z, print any of // them, update prev1 prev2, prev3 // and move ahead in each array if (ar1[i] == ar2[j] && ar2[j] == ar3[k]) { Console.Write(ar1[i] + " " ); prev1 = ar1[i]; prev2 = ar2[j]; prev3 = ar3[k]; i++; j++; k++; } // If x < y, update prev1 // and increment i else if (ar1[i] < ar2[j]) { prev1 = ar1[i]; i++; } // If y < z, update prev2 // and increment j else if (ar2[j] < ar3[k]) { prev2 = ar2[j]; j++; } // We reach here when x > y // and z < y, i.e., z is // smallest update prev3 // and increment k else { prev3 = ar3[k]; k++; } } } } // Driver code public static void Main() { // FindCommon ob = new FindCommon(); int [] ar1 = { 1, 5, 10, 20, 40, 80, 80 }; int [] ar2 = { 6, 7, 20, 80, 80, 100 }; int [] ar3 = { 3, 4, 15, 20, 30, 70, 80, 80, 120 }; Console.Write( "Common elements are " ); findCommon(ar1, ar2, ar3); } } // This code is contributed by Samim Hossain Mondal. |
Javascript
<script> // Javascript program to print common // elements in three arrays // This function prints // common elements in ar1 function findCommon(ar1, ar2, ar3, n1, n2, n3) { // Initialize starting indexes // for ar1[], ar2[] and // ar3[] var i = 0, j = 0, k = 0; // Declare three variables prev1, // prev2, prev3 to track // previous element var prev1, prev2, prev3; // Initialize prev1, prev2, // prev3 with INT_MIN prev1 = prev2 = prev3 = -1000000000; // Iterate through three arrays // while all arrays have // elements while (i < n1 && j < n2 && k < n3) { // If ar1[i] = prev1 and i < n1, // keep incrementing i while (ar1[i] === prev1 && i < n1) i++; // If ar2[j] = prev2 and j < n2, // keep incrementing j while (ar2[j] === prev2 && j < n2) j++; // If ar3[k] = prev3 and k < n3, // keep incrementing k while (ar3[k] === prev3 && k < n3) k++; // If one of the index goes out of bound, // i.e. greater than it's array's length, breaks the loop. if (i === n1 || j === n2 || k === n3) break ; // If x = y and y = z, print // any of them, update // prev1 prev2, prev3 and move //ahead in each array if (ar1[i] === ar2[j] && ar2[j] === ar3[k]) { document.write(ar1[i] + " " ); prev1 = ar1[i]; prev2 = ar2[j]; prev3 = ar3[k]; i++; j++; k++; } // If x < y, update prev1 // and increment i else if (ar1[i] < ar2[j]) { prev1 = ar1[i]; i++; } // If y < z, update prev2 // and increment j else if (ar2[j] < ar3[k]) { prev2 = ar2[j]; j++; } // We reach here when x > y // and z < y, i.e., z is // smallest update prev3 // and increment k else { prev3 = ar3[k]; k++; } } } // Driver code var ar1 = [ 1, 5, 10, 20, 40, 80, 80 ]; var ar2 = [ 6, 7, 20, 80, 80, 100 ]; var ar3 = [ 3, 4, 15, 20, 30, 70, 80, 80, 120 ]; var n1 = ar1.length; var n2 = ar2.length; var n3 = ar3.length; document.write( "Common Elements are " ); findCommon(ar1, ar2, ar3, n1, n2, n3); //Improvised by Zuhed Shaikh (zuhedshaikh95) </script> |
Common Elements are 20 80
Time Complexity: O(n1 + n2 + n3)
Auxiliary Space: O(1)
Method 3:
In this approach, we will first delete the duplicate from each array, and after this, we will find the frequency of each element and the element whose frequency equals 3 will be printed. For finding the frequency we can use a map but in this, we will use an array instead of a map. But the problem with using an array is, we cannot find the frequency of negative numbers so in the code given below we will consider each and every element of array to be positive.
Below is the implementation of the above approach:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; void commonElements(vector< int >arr1,vector< int >arr2,vector< int >arr3 , int n1 , int n2 , int n3) { // creating a max variable // for storing the maximum // value present in the all // the three array // this will be the size of // array for calculating the // frequency of each element // present in all the array int Max = INT_MIN; // deleting duplicates in linear time // for arr1 int res1 = 1; for ( int i = 1; i < n1; i++) { Max = max(arr1[i], Max); if (arr1[i] != arr1[res1 - 1]) { arr1[res1] = arr1[i]; res1++; } } // deleting duplicates in linear time // for arr2 int res2 = 1; for ( int i = 1; i < n2; i++) { Max = max(arr2[i], Max); if (arr2[i] != arr2[res2 - 1]) { arr2[res2] = arr2[i]; res2++; } } // deleting duplicates in linear time // for arr3 int res3 = 1; for ( int i = 1; i < n3; i++) { Max = max(arr3[i], Max); if (arr3[i] != arr3[res3 - 1]) { arr3[res3] = arr3[i]; res3++; } } // creating an array for finding frequency vector< int >freq(Max + 1,0); // calculating the frequency of // all the elements present in // all the array for ( int i = 0; i < res1; i++) freq[arr1[i]]++; for ( int i = 0; i < res2; i++) freq[arr2[i]]++; for ( int i = 0; i < res3; i++) freq[arr3[i]]++; // iterating till max and // whenever the frequency of element // will be three we print that element for ( int i = 0; i <= Max; i++){ if (freq[i] == 3){ cout<<i<< " " ; } } } // Driver Code int main(){ vector< int >arr1 = { 1, 5, 10, 20, 40, 80 }; vector< int >arr2 = { 6, 7, 20, 80, 100 }; vector< int >arr3 = { 3, 4, 15, 20, 30, 70, 80, 120 }; commonElements(arr1, arr2, arr3, 6, 5, 8); } // This code is contributed by shinjanpatra |
Java
// Java implementation of the above approach import java.io.*; class GFG { public static void commonElements( int [] arr1, int [] arr2, int [] arr3, int n1, int n2, int n3) { // creating a max variable // for storing the maximum // value present in the all // the three array // this will be the size of // array for calculating the // frequency of each element // present in all the array int max = Integer.MIN_VALUE; // deleting duplicates in linear time // for arr1 int res1 = 1 ; for ( int i = 1 ; i < n1; i++) { max = Math.max(arr1[i], max); if (arr1[i] != arr1[res1 - 1 ]) { arr1[res1] = arr1[i]; res1++; } } // deleting duplicates in linear time // for arr2 int res2 = 1 ; for ( int i = 1 ; i < n2; i++) { max = Math.max(arr2[i], max); if (arr2[i] != arr2[res2 - 1 ]) { arr2[res2] = arr2[i]; res2++; } } // deleting duplicates in linear time // for arr3 int res3 = 1 ; for ( int i = 1 ; i < n3; i++) { max = Math.max(arr3[i], max); if (arr3[i] != arr3[res3 - 1 ]) { arr3[res3] = arr3[i]; res3++; } } // creating an array for finding frequency int [] freq = new int [max + 1 ]; // calculating the frequency of // all the elements present in // all the array for ( int i = 0 ; i < res1; i++) freq[arr1[i]]++; for ( int i = 0 ; i < res2; i++) freq[arr2[i]]++; for ( int i = 0 ; i < res3; i++) freq[arr3[i]]++; // iterating till max and // whenever the frequency of element // will be three we print that element for ( int i = 0 ; i <= max; i++) if (freq[i] == 3 ) System.out.print(i + " " ); } // Driver Code public static void main(String[] arg) { int arr1[] = { 1 , 5 , 10 , 20 , 40 , 80 }; int arr2[] = { 6 , 7 , 20 , 80 , 100 }; int arr3[] = { 3 , 4 , 15 , 20 , 30 , 70 , 80 , 120 }; commonElements(arr1, arr2, arr3, 6 , 5 , 8 ); } } |
Python3
# Python implementation of the above approach import sys def commonElements(arr1, arr2, arr3 , n1 , n2 , n3): # creating a max variable # for storing the maximum # value present in the all # the three array # this will be the size of # array for calculating the # frequency of each element # present in all the array Max = - sys.maxsize - 1 # deleting duplicates in linear time # for arr1 res1 = 1 for i in range ( 1 , n1): Max = max (arr1[i], Max ) if arr1[i] ! = arr1[res1 - 1 ]: arr1[res1] = arr1[i] res1 + = 1 # deleting duplicates in linear time # for arr2 res2 = 1 for i in range ( 1 , n2): Max = max (arr2[i], Max ) if (arr2[i] ! = arr2[res2 - 1 ]): arr2[res2] = arr2[i] res2 + = 1 # deleting duplicates in linear time # for arr3 res3 = 1 for i in range ( 1 , n3): Max = max (arr3[i], Max ) if (arr3[i] ! = arr3[res3 - 1 ]): arr3[res3] = arr3[i] res3 + = 1 # creating an array for finding frequency freq = [ 0 for i in range ( Max + 1 )] # calculating the frequency of # all the elements present in # all the array for i in range (res1): freq[arr1[i]] + = 1 for i in range (res2): freq[arr2[i]] + = 1 for i in range (res3): freq[arr3[i]] + = 1 # iterating till max and # whenever the frequency of element # will be three we print that element for i in range ( Max + 1 ): if freq[i] = = 3 : print (i,end = " " ) # Driver Code arr1 = [ 1 , 5 , 10 , 20 , 40 , 80 ] arr2 = [ 6 , 7 , 20 , 80 , 100 ] arr3 = [ 3 , 4 , 15 , 20 , 30 , 70 , 80 , 120 ] commonElements(arr1, arr2, arr3, 6 , 5 , 8 ) # This code is contributed by shinjanpatra |
C#
// C# implementation of the above approach using System; class GFG { public static void commonElements( int [] arr1, int [] arr2, int [] arr3, int n1, int n2, int n3) { // creating a max variable // for storing the maximum // value present in the all // the three array // this will be the size of // array for calculating the // frequency of each element // present in all the array int max = int .MinValue; // deleting duplicates in linear time // for arr1 int res1 = 1; for ( int i = 1; i < n1; i++) { max = Math.Max(arr1[i], max); if (arr1[i] != arr1[res1 - 1]) { arr1[res1] = arr1[i]; res1++; } } // deleting duplicates in linear time // for arr2 int res2 = 1; for ( int i = 1; i < n2; i++) { max = Math.Max(arr2[i], max); if (arr2[i] != arr2[res2 - 1]) { arr2[res2] = arr2[i]; res2++; } } // deleting duplicates in linear time // for arr3 int res3 = 1; for ( int i = 1; i < n3; i++) { max = Math.Max(arr3[i], max); if (arr3[i] != arr3[res3 - 1]) { arr3[res3] = arr3[i]; res3++; } } // creating an array for finding frequency int [] freq = new int [max + 1]; // calculating the frequency of // all the elements present in // all the array for ( int i = 0; i < res1; i++) freq[arr1[i]]++; for ( int i = 0; i < res2; i++) freq[arr2[i]]++; for ( int i = 0; i < res3; i++) freq[arr3[i]]++; // iterating till max and // whenever the frequency of element // will be three we print that element for ( int i = 0; i <= max; i++) if (freq[i] == 3) Console.Write(i + " " ); } // Driver Code public static void Main() { int [] arr1 = { 1, 5, 10, 20, 40, 80 }; int [] arr2 = { 6, 7, 20, 80, 100 }; int [] arr3 = { 3, 4, 15, 20, 30, 70, 80, 120 }; commonElements(arr1, arr2, arr3, 6, 5, 8); } } |
Javascript
<script> // javascript implementation of the above approach function commonElements(arr1, arr2, arr3 , n1 , n2 , n3) { // creating a max variable // for storing the maximum // value present in the all // the three array // this will be the size of // array for calculating the // frequency of each element // present in all the array var max = Number.MIN_VALUE; // deleting duplicates in linear time // for arr1 var res1 = 1; for ( var i = 1; i < n1; i++) { max = Math.max(arr1[i], max); if (arr1[i] != arr1[res1 - 1]) { arr1[res1] = arr1[i]; res1++; } } // deleting duplicates in linear time // for arr2 var res2 = 1; for ( var i = 1; i < n2; i++) { max = Math.max(arr2[i], max); if (arr2[i] != arr2[res2 - 1]) { arr2[res2] = arr2[i]; res2++; } } // deleting duplicates in linear time // for arr3 var res3 = 1; for ( var i = 1; i < n3; i++) { max = Math.max(arr3[i], max); if (arr3[i] != arr3[res3 - 1]) { arr3[res3] = arr3[i]; res3++; } } // creating an array for finding frequency var freq = Array(max + 1).fill(0); // calculating the frequency of // all the elements present in // all the array for (i = 0; i < res1; i++) freq[arr1[i]]++; for (i = 0; i < res2; i++) freq[arr2[i]]++; for (i = 0; i < res3; i++) freq[arr3[i]]++; // iterating till max and // whenever the frequency of element // will be three we print that element for (i = 0; i <= max; i++) if (freq[i] == 3) document.write(i + " " ); } // Driver Code var arr1 = [ 1, 5, 10, 20, 40, 80 ]; var arr2 = [ 6, 7, 20, 80, 100 ]; var arr3 = [ 3, 4, 15, 20, 30, 70, 80, 120 ]; commonElements(arr1, arr2, arr3, 6, 5, 8); // This code is contributed by Rajput-Ji </script> |
20 80
Time Complexity: O(n1 + n2)
Auxiliary Space: O(maximum element in array))
Method 4: Using STL
The idea is to use hash set. Here we use 2 of the sets to store elements of the 1st and 2nd arrays. The elements of the 3rd array are then checked if they are present in the first 2 sets. Then, we use a 3rd set to prevent any duplicates from getting added to the required array.
Below is the implementation of the above approach:
C++
#include <bits/stdc++.h> using namespace std; void findCommon( int a[], int b[], int c[], int n1, int n2, int n3) { // three sets to maintain frequency of elements unordered_set< int > uset, uset2, uset3; for ( int i = 0; i < n1; i++) { uset.insert(a[i]); } for ( int i = 0; i < n2; i++) { uset2.insert(b[i]); } // checking if elements of 3rd array are present in // first 2 sets for ( int i = 0; i < n3; i++) { if (uset.find(c[i]) != uset.end() && uset2.find(c[i]) != uset.end()) { // using a 3rd set to prevent duplicates if (uset3.find(c[i]) == uset3.end()) cout << c[i] << " " ; uset3.insert(c[i]); } } } // Driver code int main() { int ar1[] = { 1, 5, 10, 20, 40, 80 }; int ar2[] = { 6, 7, 20, 80, 100 }; int ar3[] = { 3, 4, 15, 20, 30, 70, 80, 120 }; int n1 = sizeof (ar1) / sizeof (ar1[0]); int n2 = sizeof (ar2) / sizeof (ar2[0]); int n3 = sizeof (ar3) / sizeof (ar3[0]); cout << "Common Elements are " << endl; findCommon(ar1, ar2, ar3, n1, n2, n3); return 0; } |
Java
/*package whatever //do not write package name here */ import java.io.*; class GFG { static void findCommon( int a[], int b[], int c[], int n1, int n2, int n3) { // three sets to maintain frequency of elements HashSet<Integer> uset = new HashSet<>(); HashSet<Integer> uset2 = new HashSet<>(); HashSet<Integer> uset3 = new HashSet<>(); for ( int i = 0 ; i < n1; i++) { uset.add(a[i]); } for ( int i = 0 ; i < n2; i++) { uset2.add(b[i]); } // checking if elements of 3rd array are present in // first 2 sets for ( int i = 0 ; i < n3; i++) { if (uset.contains(c[i]) && uset2.contains(c[i])) { // using a 3rd set to prevent duplicates if (uset3.contains(c[i]) == false ) System.out.print(c[i]+ " " ); uset3.add(c[i]); } } } // Driver Code public static void main(String args[]) { int ar1[] = { 1 , 5 , 10 , 20 , 40 , 80 }; int ar2[] = { 6 , 7 , 20 , 80 , 100 }; int ar3[] = { 3 , 4 , 15 , 20 , 30 , 70 , 80 , 120 }; int n1 = ar1.length; int n2 = ar2.length; int n3 = ar3.length; System.out.println( "Common Elements are " ); findCommon(ar1, ar2, ar3, n1, n2, n3); } } // This code is contributed by shinjanpatra |
Python3
# Python implementation of the approach def findCommon(a, b, c, n1, n2, n3): # three sets to maintain frequency of elements uset = set () uset2 = set () uset3 = set () for i in range (n1): uset.add(a[i]) for i in range (n2): uset2.add(b[i]) # checking if elements of 3rd array are present in first 2 sets for i in range (n3): if (c[i] in uset and c[i] in uset2): # using a 3rd set to prevent duplicates if c[i] not in uset3: print (c[i], end = " " ) uset3.add(c[i]) # Driver code ar1 = [ 1 , 5 , 10 , 20 , 40 , 80 ] ar2 = [ 6 , 7 , 20 , 80 , 100 ] ar3 = [ 3 , 4 , 15 , 20 , 30 , 70 , 80 , 120 ] n1 = len (ar1) n2 = len (ar2) n3 = len (ar3) print ( "Common Elements are " ) findCommon(ar1, ar2, ar3, n1, n2, n3) # This code is contributed by shinjanpatra. |
Javascript
<script> function findCommon(a, b, c, n1, n2, n3) { // three sets to maintain frequency of elements let uset = new Set(); let uset2 = new Set(); let uset3 = new Set(); for (let i=0;i<n1;i++){ uset.add(a[i]); } for (let i=0;i<n2;i++){ uset2.add(b[i]); } // checking if elements of 3rd array are present in first 2 sets for (let i=0;i<n3;i++) { if (uset.has(c[i]) == true && uset2.has(c[i]) == true ) { // using a 3rd set to prevent duplicates if (uset3.has(c[i]) == false ) document.write(c[i], " " ); uset3.add(c[i]); } } } // Driver code let ar1 = [ 1, 5, 10, 20, 40, 80 ]; let ar2 = [ 6, 7, 20, 80, 100 ]; let ar3 = [ 3, 4, 15, 20, 30, 70, 80, 120 ]; let n1 = ar1.length; let n2 = ar2.length; let n3 = ar3.length; document.write( "Common Elements are " , "</br>" ); findCommon(ar1, ar2, ar3, n1, n2, n3); // This code is contributed by shinjanpatra. </script> |
C#
using System; using System.Collections.Generic; public class GFG { static void findCommon( int [] a, int [] b, int [] c, int n1, int n2, int n3) { // three sets to maintain frequency of elements HashSet< int > uset = new HashSet< int >(); HashSet< int > uset2 = new HashSet< int >(); HashSet< int > uset3 = new HashSet< int >(); for ( int i = 0; i < n1; i++) { uset.Add(a[i]); } for ( int i = 0; i < n2; i++) { uset2.Add(b[i]); } // checking if elements of 3rd array are present in // first 2 sets for ( int i = 0; i < n3; i++) { if (uset.Contains(c[i]) && uset2.Contains(c[i])) { // using a 3rd set to prevent duplicates if (!uset3.Contains(c[i])) { Console.Write(c[i]); Console.Write( " " ); } uset3.Add(c[i]); } } } // Driver code public static void Main() { int [] ar1 = { 1, 5, 10, 20, 40, 80 }; int [] ar2 = { 6, 7, 20, 80, 100 }; int [] ar3 = { 3, 4, 15, 20, 30, 70, 80, 120 }; int n1 = ar1.Length; int n2 = ar2.Length; int n3 = ar3.Length; Console.Write( "Common Elements are " ); Console.Write( "\n" ); findCommon(ar1, ar2, ar3, n1, n2, n3); } } // This code is contributed by Aarti_Rathi |
Common Elements are 20 80
Time Complexity: O(n1 + n2 + n3)
Auxiliary Space: O(n1 + n2 + n3)
Method 5: Using Binary Search
This approach is a modification of previous approach. Here Instead of using unordered_set, we use binary search to find elements of 1st array that are present in 2nd and 3rd arrays.
Below is the implementation of the above approach:
C++
#include <bits/stdc++.h> using namespace std; bool binary_search( int arr[], int n, int element) { int l = 0, h = n - 1; while (l <= h) { int mid = (l + h) / 2; if (arr[mid] == element) { return true ; } else if (arr[mid] > element) { h = mid - 1; } else { l = mid + 1; } } return false ; } void findCommon( int a[], int b[], int c[], int n1, int n2, int n3) { // Iterate on first array for ( int j = 0; j < n1; j++) { if (j != 0 && a[j] == a[j - 1]) { continue ; } // check if the element is present in 2nd and 3rd // array. if (binary_search(b, n2, a[j]) && binary_search(c, n3, a[j])) { cout << a[j] << " " ; } } } // Driver code int main() { int ar1[] = { 1, 5, 10, 20, 40, 80 }; int ar2[] = { 6, 7, 20, 80, 100 }; int ar3[] = { 3, 4, 15, 20, 30, 70, 80, 120 }; int n1 = sizeof (ar1) / sizeof (ar1[0]); int n2 = sizeof (ar2) / sizeof (ar2[0]); int n3 = sizeof (ar3) / sizeof (ar3[0]); cout << "Common Elements are " << endl; findCommon(ar1, ar2, ar3, n1, n2, n3); return 0; } // This code is contributed by Anchal Agarwal |
Java
// Java program to implement // above approach import java.io.*; public class Main { public static boolean binary_search( int arr[], int n, int element) { int l = 0 , h = n - 1 ; while (l <= h) { int mid = (l + h) / 2 ; if (arr[mid] == element) { return true ; } else if (arr[mid] > element) { h = mid - 1 ; } else { l = mid + 1 ; } } return false ; } public static void findCommon( int a[], int b[], int c[], int n1, int n2, int n3) { // Iterate on first array for ( int j = 0 ; j < n1; j++) { if (j != 0 && a[j] == a[j - 1 ]) { continue ; } // check if the element is present in 2nd and 3rd // array. if (binary_search(b, n2, a[j]) && binary_search(c, n3, a[j])) { System.out.print(a[j] + " " ); } } } /* Driver code */ public static void main(String[] args) { int ar1[] = { 1 , 5 , 10 , 20 , 40 , 80 }; int ar2[] = { 6 , 7 , 20 , 80 , 100 }; int ar3[] = { 3 , 4 , 15 , 20 , 30 , 70 , 80 , 120 }; int n1 = ar1.length; int n2 = ar2.length; int n3 = ar3.length; System.out.println( "Common elements are " ); // function calling findCommon(ar1, ar2, ar3, n1, n2, n3); } } //this code is contributed by Machhaliya Muhammad |
Python3
# Python program to Find all range # Having set bit sum X in array def binary_search(arr, n, element): l,h = 0 ,n - 1 while (l < = h): mid = (l + h) / / 2 if (arr[mid] = = element): return True elif (arr[mid] > element): h = mid - 1 else : l = mid + 1 return False def findCommon(a, b, c, n1, n2, n3): # Iterate on first array for j in range (n1): if (j ! = 0 and a[j] = = a[j - 1 ]): continue # check if the element is present in 2nd and 3rd # array. if (binary_search(b, n2, a[j]) and binary_search(c, n3, a[j])): print (a[j],end = " " ) # Driver code ar1 = [ 1 , 5 , 10 , 20 , 40 , 80 ] ar2 = [ 6 , 7 , 20 , 80 , 100 ] ar3 = [ 3 , 4 , 15 , 20 , 30 , 70 , 80 , 120 ] n1 = len (ar1) n2 = len (ar2) n3 = len (ar3) print ( "Common Elements are " ) findCommon(ar1, ar2, ar3, n1, n2, n3) # This code is contributed by shinjanpatra |
Javascript
<script> function binary_search(arr, n, element) { let l = 0, h = n - 1 while (l <= h) { let mid = Math.floor((l + h) / 2) if (arr[mid] == element) { return true } else if (arr[mid] > element) { h = mid - 1 } else { l = mid + 1 } } return false } function findCommon(a, b, c, n1, n2, n3) { // Iterate on first array for (let j = 0; j < n1; j++) { if (j != 0 && a[j] == a[j - 1]) { continue ; } // check if the element is present in 2nd and 3rd // array. if (binary_search(b, n2, a[j]) && binary_search(c, n3, a[j])) { document.write(a[j], " " ); } } } // Driver code let ar1 = [ 1, 5, 10, 20, 40, 80 ] let ar2 = [ 6, 7, 20, 80, 100 ] let ar3 = [ 3, 4, 15, 20, 30, 70, 80, 120 ] let n1 = ar1.length let n2 = ar2.length let n3 = ar3.length document.write( "Common Elements are " , "</br>" ) findCommon(ar1, ar2, ar3, n1, n2, n3) // This code is contributed by shinjanpatra </script> |
C#
// C# program to implement // above approach using System; public class GFG { public static bool binary_search( int [] arr, int n, int element) { int l = 0, h = n - 1; while (l <= h) { int mid = (l + h) / 2; if (arr[mid] == element) { return true ; } else if (arr[mid] > element) { h = mid - 1; } else { l = mid + 1; } } return false ; } public static void findCommon( int [] a, int [] b, int [] c, int n1, int n2, int n3) { // Iterate on first array for ( int j = 0; j < n1; j++) { if (j != 0 && a[j] == a[j - 1]) { continue ; } // check if the element is present in 2nd and 3rd // array. if (binary_search(b, n2, a[j]) && binary_search(c, n3, a[j])) { Console.Write(a[j] + " " ); } } } /* Driver code */ public static void Main() { int [] ar1 = { 1, 5, 10, 20, 40, 80 }; int [] ar2 = { 6, 7, 20, 80, 100 }; int [] ar3 = { 3, 4, 15, 20, 30, 70, 80, 120 }; int n1 = ar1.Length; int n2 = ar2.Length; int n3 = ar3.Length; Console.WriteLine( "Common elements are " ); // function calling findCommon(ar1, ar2, ar3, n1, n2, n3); } } //this code is contributed by Saurabh Jaiswal |
Common Elements are 20 80
Time complexity: O(n1(log(n2*n3))
Auxiliary complexity: O(1)
This article is compiled by Rahul Gupta Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
Please Login to comment...