Skip to content
Related Articles
Get the best out of our app
GFG App
Open App
geeksforgeeks
Browser
Continue

Related Articles

Find any one of the multiple repeating elements in read only array | Set 2

Improve Article
Save Article
Like Article
Improve Article
Save Article
Like Article

Given a read-only array arr[] of size N + 1, find one of the multiple repeating elements in the array where the array contains integers only between 1 and N
Note: Read-only array means that the contents of the array can’t be modified.

Examples: 

Input: N = 5, arr[] = {1, 1, 2, 3, 5, 4} 
Output:
Explanation: 
1 is the only number repeated in the array.

Input: N = 10, arr[] = {10, 1, 2, 3, 5, 4, 9, 8, 5, 6, 4} 
Output:
Explanation: 
5 is the one of the number repeated in the array. 
 

In the previous post, we have discussed the same article with a space complexity O(N) and O(sqrt(N)).

Approach: This approach is based on Floyd’s Tortoise and Hare Algorithm (Cycle Detection Algorithm). 

  • Use the function f(x) = arr[x] to construct the sequence:

arr[0], arr[arr[0]], arr[arr[arr[0]]], arr[arr[arr[arr[0]]]] ……. 
 

  • Each new element in the sequence is an element in arr[] at the index of the previous element.
  • Starting from x = arr[0], it will produce a linked list with a cycle.
  • The cycle appears because arr[] contains duplicate elements(at least one). The duplicate value is an entrance to the cycle. Given below is an example to show how cycle exists: 
    For Example: Let the array arr[] = {2, 6, 4, 1, 3, 1, 5} 
     
index 0 1 2 3 4 5 6
arr 2 6 4 1 3 1 5

Starting from index 0, the traversal looks as follows: 

arr[0] = 2 –> arr[2] = 4 –> arr[4] = 3 –> arr[3] = 1 –> arr[1] = 6 –> arr[6] = 5 –> arr[5] = 1
 

The sequence forms cycle as shown below: 
 

  • Algorithm consists of two parts and uses two pointers, usually called tortoise and hare.
  •  hare = arr[arr[hare]] is twice as fast as tortoise = arr[tortoise].
  • Since the hare goes fast, it would be the first one who enters the cycle and starts to run around the cycle.
  • At some point, the tortoise enters the cycle as well, and since it’s moving slower the hare catches the tortoise up at some intersection point.
  • Note that the intersection point is not the cycle entrance in the general case, but the two intersect at somewhere middle in cycle.
  • Move tortoise to the starting point of sequence and hare remains within cycle and both move with the same speed i.e. tortoise = arr[tortoise] and hare = arr[hare]. Now they intersect at duplicate element.

Below is the implementation of the above approach:

C++




// C++ code for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the duplicate
// value in the given array arr[]
void findDuplicate(int arr[])
{
 
    // Initialise variables
    int tortoise = arr[0];
    int hare = arr[0];
 
    // Loop till we find the
    // duplicate element
    while (1) {
 
        tortoise = arr[tortoise];
 
        // Hare moves with twice
        // the speed of tortoise
        hare = arr[arr[hare]];
        if (tortoise == hare)
            break;
    }
 
    tortoise = arr[0];
 
    // Loop to get start point
    // of the cycle as start
    // point will be the duplicate
    // element
    while (tortoise != hare) {
        tortoise = arr[tortoise];
        hare = arr[hare];
    }
 
    // Print the duplicate element
    cout << tortoise;
}
 
// Driver Code
int main()
{
    // Given array
    int arr[] = { 2, 6, 4, 1, 3, 1, 5 };
 
    // Function Call
    findDuplicate(arr);
 
    return 0;
}


Java




// Java code for the above approach
class GFG{
 
// Function to find the duplicate
// value in the given array arr[]
static void findDuplicate(int arr[])
{
     
    // Initialise variables
    int tortoise = arr[0];
    int hare = arr[0];
 
    // Loop till we find the
    // duplicate element
    while (true)
    {
        tortoise = arr[tortoise];
         
        // Hare moves with twice
        // the speed of tortoise
        hare = arr[arr[hare]];
        if (tortoise == hare)
            break;
    }
     
    tortoise = arr[0];
 
    // Loop to get start point
    // of the cycle as start
    // point will be the duplicate
    // element
    while (tortoise != hare)
    {
        tortoise = arr[tortoise];
        hare = arr[hare];
    }
 
    // Print the duplicate element
    System.out.print(tortoise);
}
 
// Driver Code
public static void main (String []args)
{
     
    // Given array
    int arr[] = { 2, 6, 4, 1, 3, 1, 5 };
 
    // Function Call
    findDuplicate(arr);
}
}
 
// This code is contributed by chitranayal


Python3




# Python3 program for the above approach
 
# Function to find the duplicate
# value in the given array arr[]
def findDuplicate(arr):
 
    # Initialise variables
    tortoise = arr[0]
    hare = arr[0]
 
    # Loop till we find the
    # duplicate element
    while (1):
 
        tortoise = arr[tortoise]
 
        # Hare moves with twice
        # the speed of tortoise
        hare = arr[arr[hare]]
        if (tortoise == hare):
            break
 
    tortoise = arr[0]
 
    # Loop to get start point
    # of the cycle as start
    # point will be the duplicate
    # element
    while (tortoise != hare):
        tortoise = arr[tortoise]
        hare = arr[hare]
 
    # Print the duplicate element
    print (tortoise)
 
# Driver Code
 
# Given array
arr = [ 2, 6, 4, 1, 3, 1, 5 ]
 
# Function Call
findDuplicate(arr)
 
# This code is contributed by PratikBasu


C#




// C# program for the above approach
using System;
 
class GFG{
  
// Function to find the duplicate
// value in the given array []arr
static void findDuplicate(int []arr)
{
      
    // Initialise variables
    int tortoise = arr[0];
    int hare = arr[0];
  
    // Loop till we find the
    // duplicate element
    while (true)
    {
        tortoise = arr[tortoise];
          
        // Hare moves with twice
        // the speed of tortoise
        hare = arr[arr[hare]];
        if (tortoise == hare)
            break;
    }
      
    tortoise = arr[0];
  
    // Loop to get start point
    // of the cycle as start
    // point will be the duplicate
    // element
    while (tortoise != hare)
    {
        tortoise = arr[tortoise];
        hare = arr[hare];
    }
  
    // Print the duplicate element
    Console.Write(tortoise);
}
  
// Driver Code
public static void Main(String []args)
{
      
    // Given array
    int []arr = { 2, 6, 4, 1, 3, 1, 5 };
  
    // Function Call
    findDuplicate(arr);
}
}
 
// This code is contributed by Amit Katiyar


Javascript




<script>
 
// JavaScript code for the above approach
 
// Function to find the duplicate
// value in the given array arr[]
function findDuplicate(arr)
{
     
    // Initialise variables
    let tortoise = arr[0];
    let hare = arr[0];
 
    // Loop till we find the
    // duplicate element
    while (true)
    {
        tortoise = arr[tortoise];
         
        // Hare moves with twice
        // the speed of tortoise
        hare = arr[arr[hare]];
         
        if (tortoise == hare)
            break;
    }
     
    tortoise = arr[0];
 
    // Loop to get start point
    // of the cycle as start
    // point will be the duplicate
    // element
    while (tortoise != hare)
    {
        tortoise = arr[tortoise];
        hare = arr[hare];
    }
     
    // Print the duplicate element
    document.write(tortoise);
}
     
// Driver Code
 
// Given array
let arr = [ 2, 6, 4, 1, 3, 1, 5 ];
 
// Function Call
findDuplicate(arr);
 
// This code is contributed by sanjoy_62  
 
</script>


Output: 

1

 

Time Complexity: O(N) 
Auxiliary Space: O(1)
 


My Personal Notes arrow_drop_up
Last Updated : 22 Oct, 2021
Like Article
Save Article
Similar Reads
Related Tutorials