Find any one of the multiple repeating elements in read only array | Set 2
Given a read-only array arr[] of size N + 1, find one of the multiple repeating elements in the array where the array contains integers only between 1 and N.
Note: Read-only array means that the contents of the array can’t be modified.
Examples:
Input: N = 5, arr[] = {1, 1, 2, 3, 5, 4}
Output: 1
Explanation:
1 is the only number repeated in the array.Input: N = 10, arr[] = {10, 1, 2, 3, 5, 4, 9, 8, 5, 6, 4}
Output: 5
Explanation:
5 is the one of the number repeated in the array.
In the previous post, we have discussed the same article with a space complexity O(N) and O(sqrt(N)).
Approach: This approach is based on Floyd’s Tortoise and Hare Algorithm (Cycle Detection Algorithm).
- Use the function f(x) = arr[x] to construct the sequence:
arr[0], arr[arr[0]], arr[arr[arr[0]]], arr[arr[arr[arr[0]]]] …….
- Each new element in the sequence is an element in arr[] at the index of the previous element.
- Starting from x = arr[0], it will produce a linked list with a cycle.
- The cycle appears because arr[] contains duplicate elements(at least one). The duplicate value is an entrance to the cycle. Given below is an example to show how cycle exists:
For Example: Let the array arr[] = {2, 6, 4, 1, 3, 1, 5}
index | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|---|
arr | 2 | 6 | 4 | 1 | 3 | 1 | 5 |
Starting from index 0, the traversal looks as follows:
arr[0] = 2 –> arr[2] = 4 –> arr[4] = 3 –> arr[3] = 1 –> arr[1] = 6 –> arr[6] = 5 –> arr[5] = 1.
The sequence forms cycle as shown below:
- Algorithm consists of two parts and uses two pointers, usually called tortoise and hare.
- hare = arr[arr[hare]] is twice as fast as tortoise = arr[tortoise].
- Since the hare goes fast, it would be the first one who enters the cycle and starts to run around the cycle.
- At some point, the tortoise enters the cycle as well, and since it’s moving slower the hare catches the tortoise up at some intersection point.
- Note that the intersection point is not the cycle entrance in the general case, but the two intersect at somewhere middle in cycle.
- Move tortoise to the starting point of sequence and hare remains within cycle and both move with the same speed i.e. tortoise = arr[tortoise] and hare = arr[hare]. Now they intersect at duplicate element.
Below is the implementation of the above approach:
C++
// C++ code for the above approach #include <bits/stdc++.h> using namespace std; // Function to find the duplicate // value in the given array arr[] void findDuplicate( int arr[]) { // Initialise variables int tortoise = arr[0]; int hare = arr[0]; // Loop till we find the // duplicate element while (1) { tortoise = arr[tortoise]; // Hare moves with twice // the speed of tortoise hare = arr[arr[hare]]; if (tortoise == hare) break ; } tortoise = arr[0]; // Loop to get start point // of the cycle as start // point will be the duplicate // element while (tortoise != hare) { tortoise = arr[tortoise]; hare = arr[hare]; } // Print the duplicate element cout << tortoise; } // Driver Code int main() { // Given array int arr[] = { 2, 6, 4, 1, 3, 1, 5 }; // Function Call findDuplicate(arr); return 0; } |
Java
// Java code for the above approach class GFG{ // Function to find the duplicate // value in the given array arr[] static void findDuplicate( int arr[]) { // Initialise variables int tortoise = arr[ 0 ]; int hare = arr[ 0 ]; // Loop till we find the // duplicate element while ( true ) { tortoise = arr[tortoise]; // Hare moves with twice // the speed of tortoise hare = arr[arr[hare]]; if (tortoise == hare) break ; } tortoise = arr[ 0 ]; // Loop to get start point // of the cycle as start // point will be the duplicate // element while (tortoise != hare) { tortoise = arr[tortoise]; hare = arr[hare]; } // Print the duplicate element System.out.print(tortoise); } // Driver Code public static void main (String []args) { // Given array int arr[] = { 2 , 6 , 4 , 1 , 3 , 1 , 5 }; // Function Call findDuplicate(arr); } } // This code is contributed by chitranayal |
Python3
# Python3 program for the above approach # Function to find the duplicate # value in the given array arr[] def findDuplicate(arr): # Initialise variables tortoise = arr[ 0 ] hare = arr[ 0 ] # Loop till we find the # duplicate element while ( 1 ): tortoise = arr[tortoise] # Hare moves with twice # the speed of tortoise hare = arr[arr[hare]] if (tortoise = = hare): break tortoise = arr[ 0 ] # Loop to get start point # of the cycle as start # point will be the duplicate # element while (tortoise ! = hare): tortoise = arr[tortoise] hare = arr[hare] # Print the duplicate element print (tortoise) # Driver Code # Given array arr = [ 2 , 6 , 4 , 1 , 3 , 1 , 5 ] # Function Call findDuplicate(arr) # This code is contributed by PratikBasu |
C#
// C# program for the above approach using System; class GFG{ // Function to find the duplicate // value in the given array []arr static void findDuplicate( int []arr) { // Initialise variables int tortoise = arr[0]; int hare = arr[0]; // Loop till we find the // duplicate element while ( true ) { tortoise = arr[tortoise]; // Hare moves with twice // the speed of tortoise hare = arr[arr[hare]]; if (tortoise == hare) break ; } tortoise = arr[0]; // Loop to get start point // of the cycle as start // point will be the duplicate // element while (tortoise != hare) { tortoise = arr[tortoise]; hare = arr[hare]; } // Print the duplicate element Console.Write(tortoise); } // Driver Code public static void Main(String []args) { // Given array int []arr = { 2, 6, 4, 1, 3, 1, 5 }; // Function Call findDuplicate(arr); } } // This code is contributed by Amit Katiyar |
Javascript
<script> // JavaScript code for the above approach // Function to find the duplicate // value in the given array arr[] function findDuplicate(arr) { // Initialise variables let tortoise = arr[0]; let hare = arr[0]; // Loop till we find the // duplicate element while ( true ) { tortoise = arr[tortoise]; // Hare moves with twice // the speed of tortoise hare = arr[arr[hare]]; if (tortoise == hare) break ; } tortoise = arr[0]; // Loop to get start point // of the cycle as start // point will be the duplicate // element while (tortoise != hare) { tortoise = arr[tortoise]; hare = arr[hare]; } // Print the duplicate element document.write(tortoise); } // Driver Code // Given array let arr = [ 2, 6, 4, 1, 3, 1, 5 ]; // Function Call findDuplicate(arr); // This code is contributed by sanjoy_62 </script> |
1
Time Complexity: O(N)
Auxiliary Space: O(1)
Please Login to comment...