# Find any K distinct odd integers such that their sum is equal to N

Given two integers **N** and **K**, the task is to find any **K** distinct odd integers such that their sum is equal to **N**. If no such integers exists, print -1.**Examples:**

Input:N = 10, K = 2Output:1, 9Explanation:

There are two possible distinct odd integers, such that their sum is equal to N.

Possible K integers can be – {(1, 9), (3, 7)}Input:N = 5, K = 4Output:-1Explanation:

There are no such 4 distinct odd integers such that their sum is 5.

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the

DSA Self Paced Courseat a student-friendly price and become industry ready. To complete your preparation from learning a language to DS Algo and many more, please referComplete Interview Preparation Course.In case you wish to attend

live classeswith experts, please referDSA Live Classes for Working ProfessionalsandCompetitive Programming Live for Students.

**Approach:**

- The key observation in this problem is if N and K have different parity then it is not possible to find K such distinct integers such that their sum is equal to N,
- Otherwise such
**K – 1**integers will consist of**first K-1 odd positive integers** - The
**K**will be equal to^{th}odd number**(N – the sum of first (K-1) odd integers)**

K^{th}Odd number = N - sum of first K-1 integer

Below is the implementation of the above approach:

## C++

`// C++ implementation to find k` `// odd integers such that their sum is N` `#include <bits/stdc++.h>` `using` `namespace` `std;` `// Function to find K odd integers` `// such that their sum is N` `void` `oddIntegers(` `int` `n, ` `int` `k)` `{` ` ` `// Condition to check if there` ` ` `// exist such K integers` ` ` `if` `(n % 2 != k % 2) {` ` ` `cout << ` `"-1"` ` ` `<< ` `"\n"` `;` ` ` `return` `;` ` ` `}` ` ` `int` `sum = 0;` ` ` `int` `i = 1;` ` ` `int` `j = 1;` ` ` `// Loop to find first K-1` ` ` `// distinct odd integers` ` ` `while` `(j < k) {` ` ` `sum = sum + i;` ` ` `cout << i << ` `" "` `;` ` ` `i = i + 2;` ` ` `j++;` ` ` `}` ` ` `// Final Kth odd number` ` ` `int` `finalOdd = n - sum;` ` ` `cout << finalOdd << ` `"\n"` `;` `}` `// Driver code` `int` `main()` `{` ` ` `int` `n = 10;` ` ` `int` `k = 2;` ` ` `oddIntegers(n, k);` ` ` `return` `0;` `}` |

## Java

`// Java implementation to find k` `// odd integers such that their sum is N` `class` `GFG` `{` `// Function to find K odd integers` `// such that their sum is N` `static` `void` `oddIntegers(` `int` `n, ` `int` `k)` `{` ` ` `// Condition to check if there` ` ` `// exist such K integers` ` ` `if` `(n % ` `2` `!= k % ` `2` `) {` ` ` `System.out.println(` `"-1"` `);` ` ` `return` `;` ` ` `}` ` ` `int` `sum = ` `0` `;` ` ` `int` `i = ` `1` `;` ` ` `int` `j = ` `1` `;` ` ` `// Loop to find first K-1` ` ` `// distinct odd integers` ` ` `while` `(j < k) {` ` ` `sum = sum + i;` ` ` `System.out.print(i+` `" "` `);` ` ` `i = i + ` `2` `;` ` ` `j++;` ` ` `}` ` ` `// Final Kth odd number` ` ` `int` `finalOdd = n - sum;` ` ` ` ` `System.out.println(finalOdd);` `}` `// Driver code` `public` `static` `void` `main (String[] args)` `{` ` ` `int` `n = ` `10` `;` ` ` `int` `k = ` `2` `;` ` ` `oddIntegers(n, k);` `}` `}` `// This code is contributed by shubhamsingh` |

## Python3

`# Python3 implementation to find k ` `# odd integers such that their sum is N ` `# Function to find K odd integers ` `# such that their sum is N ` `def` `oddIntegers(n, k) : ` ` ` `# Condition to check if there ` ` ` `# exist such K integers ` ` ` `if` `(n ` `%` `2` `!` `=` `k ` `%` `2` `) :` ` ` `print` `(` `"-1"` `); ` ` ` ` ` `return` `; ` ` ` `sum` `=` `0` `; ` ` ` `i ` `=` `1` `; ` ` ` `j ` `=` `1` `; ` ` ` `# Loop to find first K-1 ` ` ` `# distinct odd integers ` ` ` `while` `(j < k) :` ` ` `sum` `+` `=` `i; ` ` ` `print` `(i,end` `=` `" "` `); ` ` ` `i ` `+` `=` `2` `; ` ` ` `j ` `+` `=` `1` `; ` ` ` `# Final Kth odd number ` ` ` `finalOdd ` `=` `n ` `-` `sum` `; ` ` ` `print` `(finalOdd); ` `# Driver code ` `if` `__name__ ` `=` `=` `"__main__"` `: ` ` ` `n ` `=` `10` `; ` ` ` `k ` `=` `2` `; ` ` ` `oddIntegers(n, k); ` ` ` `# This code is contributed by AnkitRai01` |

## C#

`// C# implementation to find k` `// odd integers such that their sum is N` `using` `System;` `class` `GFG` `{` ` ` `// Function to find K odd integers` `// such that their sum is N` `static` `void` `oddints(` `int` `n, ` `int` `k)` `{` ` ` `// Condition to check if there` ` ` `// exist such K integers` ` ` `if` `(n % 2 != k % 2) {` ` ` `Console.WriteLine(` `"-1"` `);` ` ` `return` `;` ` ` `}` ` ` ` ` `int` `sum = 0;` ` ` `int` `i = 1;` ` ` `int` `j = 1;` ` ` ` ` `// Loop to find first K-1` ` ` `// distinct odd integers` ` ` `while` `(j < k) {` ` ` `sum = sum + i;` ` ` `Console.Write(i+` `" "` `);` ` ` `i = i + 2;` ` ` `j++;` ` ` `}` ` ` ` ` `// Final Kth odd number` ` ` `int` `finalOdd = n - sum;` ` ` ` ` `Console.WriteLine(finalOdd);` `}` ` ` `// Driver code` `public` `static` `void` `Main(String[] args)` `{` ` ` `int` `n = 10;` ` ` `int` `k = 2;` ` ` ` ` `oddints(n, k);` `}` `}` `// This code is contributed by PrinciRaj1992` |

## Javascript

`<script>` `// JavaScript implementation to find k` `// odd integers such that their sum is N ` `// Function to find K odd integers` `// such that their sum is N` ` ` `function` `oddIntegers(n , k) ` ` ` `{` ` ` `// Condition to check if there` ` ` `// exist such K integers` ` ` `if` `(n % 2 != k % 2) {` ` ` `document.write(` `"-1"` `);` ` ` `return` `;` ` ` `}` ` ` `var` `sum = 0;` ` ` `var` `i = 1;` ` ` `var` `j = 1;` ` ` `// Loop to find first K-1` ` ` `// distinct odd integers` ` ` `while` `(j < k) {` ` ` `sum = sum + i;` ` ` `document.write(i + ` `" "` `);` ` ` `i = i + 2;` ` ` `j++;` ` ` `}` ` ` `// Final Kth odd number` ` ` `var` `finalOdd = n - sum;` ` ` `document.write(finalOdd);` ` ` `}` ` ` `// Driver code` ` ` ` ` `var` `n = 10;` ` ` `var` `k = 2;` ` ` `oddIntegers(n, k);` `// This code contributed by Rajput-Ji` `</script>` |

**Output:**

1 9

**Performance Analysis:**

**Time Complexity:**As in the above approach, There is a loop to find such K odd integers which takes O(K) time in worst case. Hence the Time Complexity will be**O(K)**.**Auxiliary Space Complexity:**As in the above approach, There is no extra space used. Hence the auxiliary space complexity will be**O(1)**.