Find all Unique Subsets of a given Set
Given an array A[] of positive integers, print all the unique non-empty subsets of the array
Note: The set can not contain duplicate elements, so any repeated subset should be considered only once in the output.
Examples:
Input: A[] = {1, 5, 6}
Output: {{1}, {1, 5}, {1, 6}, {5}, {5, 6}, {6}, {1, 5, 6}}
Explanation: The number of all the non-empty possible subsets will be 2N-1.
Here it will be {1}, {1, 5}, {1, 6}, {5}, {5, 6}, {6} and {1, 5, 6}Input: A[] = {1, 2, 2}
Output: {{1}, {1, 2}, {1, 2, 2}, {2}, {2, 2}}
Intuition: The main idea to solve the problem is as follows:
This problem falls under the classic algorithm of “pick or don’t pick“.
In this problem, there are two choices of whether we want to include an element in the set or exclude it. For every choice, the element can be appended into the resultant array and then, using backtracking, we will exclude it. This way, the desired set will be generated.
The image shown below shows the choices for each element and how the resultant array is generated at the end of the recursion tree.
Recursion tree to generate all subsets
Approach 1 (Recursion):
Follow the given steps to solve the problem using the above approach:
- Iterate over the elements one by one.
- For each element, just pick the element and move ahead recursively and add the subset to the result.
- Then using backtracking, remove the element and continue finding the subsets and adding them to the result.
Below is the implementation for the above approach:
C++
// C++ code to implement the approach #include <bits/stdc++.h> using namespace std; // Helper function to find all unique subsets void findSubsets(vector< int >& v, int idx, vector< int >& subset, set<vector< int > >& result) { // If the current subset is not empty // insert it into the result if (!subset.empty()) result.insert(subset); // Iterate over every element in the array for ( int j = idx; j < v.size(); j++) { // Pick the element and move ahead subset.push_back(v[j]); findSubsets(v, j + 1, subset, result); // Backtrack to drop the element subset.pop_back(); } } // Function to return all unique subsets vector<vector< int > > solve(vector< int >& v) { // To store the resulting subsets set<vector< int > > result; vector< int > subset; // Helper function call findSubsets(v, 0, subset, result); vector<vector< int > > res; for ( auto v : result) res.push_back(v); return res; } // Driver code int main() { vector< int > A = { 1, 2, 2 }; // Function call vector<vector< int > > result = solve(A); // Print all unique subsets for ( auto v : result) { for ( int i : v) { cout << i << " " ; } cout << "\n" ; } return 0; } |
Java
// Java code to implement the above approach import java.io.*; import java.util.*; class GFG { // Helper function to find all unique subsets static void findSubsets(List<Integer> v, int idx, List<Integer> subset, List<List<Integer> > result) { // If the current subset is not empty insert it into // the result if (!subset.isEmpty()) { if (!result.contains(subset)) { result.add( new ArrayList<>(subset)); } } // Iterate over every element in the array for ( int j = idx; j < v.size(); j++) { // Pick the element and move ahead subset.add(v.get(j)); findSubsets(v, j + 1 , subset, result); // Backtrack to drop the element subset.remove(subset.size() - 1 ); } } // Function to return all unique subsets static List<List<Integer> > solve(List<Integer> v) { // To store the resulting subsets. List<List<Integer> > result = new ArrayList<List<Integer> >(); List<Integer> subset = new ArrayList<Integer>(); // Helper function call findSubsets(v, 0 , subset, result); List<List<Integer> > res = new ArrayList<List<Integer> >(); for ( int i = 0 ; i < result.size(); i++) { res.add( new ArrayList<>(result.get(i))); } return res; } public static void main(String[] args) { List<Integer> A = new ArrayList<Integer>(); A.add( 1 ); A.add( 2 ); A.add( 2 ); List<List<Integer> > result = new ArrayList<List<Integer> >(); // Function call result = solve(A); // print all unique subsets for ( int i = 0 ; i < result.size(); i++) { List<Integer> temp = result.get(i); for ( int j = 0 ; j < temp.size(); j++) { System.out.print(temp.get(j) + " " ); } System.out.println(); } } } // This code is contributed by lokesh (lokeshmvs21). |
Python3
# Python code to implement the above approach # Helper function to find all unique subsets def findSubsets(v, idx, subset, result): # If the current subset is not empty insert it into # the result if ( len (subset) ! = 0 ): if (subset not in result): result.append(subset[:]) # Iterate over every element in the array for j in range (idx, len (v)): # Pick the element and move ahead subset.append(v[j]) findSubsets(v, j + 1 , subset, result) # Backtrack to drop the element subset.pop() # Function to return all unique subsets def solve(v): # To store the resulting subsets. result = [] subset = [] # Helper function call findSubsets(v, 0 , subset, result) res = [] for i in range ( len (result)): res.append( list (result[i])) return res if __name__ = = '__main__' : A = [ 1 , 2 , 2 ] # Function Call result = solve(A) # print all unique subsets for i in range ( len (result)): temp = result[i] for j in range ( len (temp)): print (temp[j], end = " " ) print () # This code is contributed by Tapesh(tapeshdua420) |
C#
// C# code to implement the approach using System; using System.Collections.Generic; using System.Linq; public class ListEqualityComparer<T> : IEqualityComparer<List<T> > { private readonly IEqualityComparer<T> _itemEqualityComparer; public ListEqualityComparer() : this ( null ) { } public ListEqualityComparer( IEqualityComparer<T> itemEqualityComparer) { _itemEqualityComparer = itemEqualityComparer ?? EqualityComparer<T>.Default; } public static readonly ListEqualityComparer<T> Default = new ListEqualityComparer<T>(); public bool Equals(List<T> x, List<T> y) { if (ReferenceEquals(x, y)) return true ; if (ReferenceEquals(x, null ) || ReferenceEquals(y, null )) return false ; return x.Count == y.Count && !x.Except(y, _itemEqualityComparer).Any(); } public int GetHashCode(List<T> list) { int hash = 17; foreach ( var itemHash in list .Select(x => _itemEqualityComparer .GetHashCode(x)) .OrderBy(h => h)) { hash += 31 * itemHash; } return hash; } } class Program { // Helper function to find all unique subsets static void findSubsets(List< int > v, int idx, List< int > subset, List<List< int > > result) { // If the current subset is not empty // insert it into the result if (subset.Count != 0) { result.Add( new List< int >(subset)); } // Iterate over every element in the array for ( int j = idx; j < v.Count; j++) { // Pick the element and move ahead subset.Add(v[j]); findSubsets(v, j + 1, subset, result); // Backtrack to drop the element subset.RemoveAt(subset.Count - 1); } } // Function to return all unique subsets static List<List< int > > solve(List< int > v) { // To store the resulting subsets List<List< int > > result = new List<List< int > >(); List< int > subset = new List< int >(); // Helper function call findSubsets(v, 0, subset, result); List<List< int > > newList = result .Distinct( ListEqualityComparer< int >.Default) .ToList(); return newList; } // Driver code static void Main( string [] args) { List< int > A = new List< int >(); A.Add(1); A.Add(2); A.Add(2); // Function call List<List< int > > result = solve(A); // Print all unique subsets foreach (List< int > v in result) { foreach ( int i in v) { Console.Write(i + " " ); } Console.WriteLine(); } } } // This code is contributed by Tapesh(tapeshdua420) |
Javascript
// Javascript code to implement the approach let result = new Set(); let subset = []; // Helper function to find all unique subsets function findSubsets(idx) { // If the current subset is not empty // insert it into the result if (subset.length > 0){ result.add(subset.join( "" )); } // Iterate over every element in the array for (let j = idx; j < v.length; j++) { // Pick the element and move ahead subset.push(v[j]); findSubsets(j + 1); // Backtrack to drop the element subset.pop(); } } // Function to return all unique subsets function solve() { // To store the resulting subsets // Helper function call findSubsets(0); let res = Array.from(result); // console.log(res); return res; } // Driver code let v = [1, 2, 2]; // Function call let rslt = solve(v); // Print all unique subsets for (let i = 0; i < rslt.length; i++){ let temp = "" ; for (let j = 0; j < rslt[i].length; j++){ temp = temp + rslt[i][j] + " " ; } console.log(temp); } // The code is contributed by Nidhi goel. |
1 1 2 1 2 2 2 2 2
Time complexity: O(N * log(2N) * 2N) = O(N2 * 2N)
Auxiliary space: O(2N)
Approach 2 (Iterative Approach):
Follow the given steps to solve the problem using the above approach:
- Iterate through every number, and there are two choices:
- Either include the element, then add it into all subsets.
- Or exclude the element, then don’t do anything.
Below is the implementation for the above approach:
C++
// C++ code to implement the approach #include <bits/stdc++.h> using namespace std; // Function to return all unique subsets vector<vector< int > > solve(vector< int >& v) { // To store the resulting subsets set<vector< int > > res; vector< int > subset; vector<vector< int > > result; // Insert it into the resultant vector res.insert(subset); // Iterate over all elements for ( int i = 0; i < v.size(); i++) { int N = res.size(); for ( auto it = res.begin(); it != res.end() and N > 0; it++) { // Iterate through every subset // generated till now and inset // the current element in the // end of it subset = *it; subset.push_back(v[i]); result.push_back(subset); N--; } res.insert(result.begin(), result.end()); result.clear(); } for ( auto u : res) result.push_back(u); return result; } // Driver code int main() { vector< int > A = { 1, 2, 2 }; // Function call vector<vector< int > > result = solve(A); for ( auto v : result) { for ( int i : v) { cout << i << " " ; } cout << "\n" ; } return 0; } |
Java
// Java code to implement the approach import java.util.*; class GFG { // Function to return all unique subsets public static List<List<Integer> > solve(List<Integer> v) { // To store the resulting subsets Set<List<Integer> > res = new HashSet<>(); List<Integer> subset = new ArrayList<>(); List<List<Integer> > result = new ArrayList<>(); // Insert it into the resultant vector res.add(subset); // Iterate over all elements for ( int i = 0 ; i < v.size(); i++) { int N = res.size(); for (List<Integer> it : res) { // Iterate through every subset // generated till now and insert // the current element in the // end of it subset = new ArrayList<>(it); subset.add(v.get(i)); result.add(subset); N--; if (N == 0 ) { break ; } } res.addAll(result); result.clear(); } return new ArrayList<>(res); } // Driver code public static void main(String[] args) { List<Integer> A = Arrays.asList( 1 , 2 , 2 ); // Function call List<List<Integer> > result = solve(A); result.sort((x, y) -> { for ( int i = 0 ; i < Math.min(x.size(), y.size()); i++) { if (x.get(i) != y.get(i)) { return x.get(i) - y.get(i); } } return x.size() - y.size(); }); for (List<Integer> v : result) { for ( int i : v) { System.out.print(i + " " ); } System.out.println(); } } } // This code is contributed by akashish__ |
Python3
from typing import List def solve(v: List [ int ]) - > List [ List [ int ]]: # To store the resulting subsets res = set () subset = [] result = [] # Insert an empty subset into the resultant set res.add( tuple (subset)) # Iterate over all elements for i in range ( len (v)): N = len (res) for it in res: # Iterate through every subset generated till now and insert the current element in the end of it subset = list (it) subset.append(v[i]) result.append(subset) N - = 1 if N = = 0 : break res.update([ tuple (x) for x in result]) result.clear() return [ list (x) for x in res] # Driver code if __name__ = = '__main__' : A = [ 1 , 2 , 2 ] # Function call result = solve(A) result.sort(key = lambda x: ( len (x), x)) for v in result: for i in v: print (i, end = ' ' ) print () |
C#
using System; using System.Collections.Generic; using System.Linq; class GFG { // Function to return all unique subsets public static List<List< int >> solve(List< int > v) { // To store the resulting subsets HashSet<List< int >> res = new HashSet<List< int >>(); List< int > subset = new List< int >(); List<List< int >> result = new List<List< int >>(); // Insert it into the resultant vector res.Add(subset); // Iterate over all elements for ( int i = 0; i < v.Count(); i++) { int N = res.Count(); foreach (List< int > it in res) { // Iterate through every subset // generated till now and insert // the current element in the // end of it subset = new List< int >(it); subset.Add(v[i]); result.Add(subset); N--; if (N == 0) { break ; } } res.UnionWith(result); result.Clear(); } return res.ToList(); } // Driver code static void Main( string [] args) { List< int > A = new List< int > { 1, 2, 2 }; // Function call List<List< int >> result = solve(A); result.Sort((x, y) => { for ( int i = 0; i < Math.Min(x.Count(), y.Count()); i++) { if (x[i] != y[i]) { return x[i] - y[i]; } } return x.Count() - y.Count(); }); foreach (List< int > v in result) { foreach ( int i in v) { Console.Write(i + " " ); } Console.WriteLine(); } } } |
Javascript
function solve(v) { // To store the resulting subsets let res = new Set(); let subset = []; let result = []; // Insert it into the resultant set res.add(subset.toString()); // Iterate over all elements for (let i = 0; i < v.length; i++) { let N = res.size; for (let it of res) { // Iterate through every subset generated till now and insert the current element in the end of it let subset = it.split( "," ).map(Number); subset.push(v[i]); result.push(subset); N--; if (N == 0) { break ; } } for (let x of result) { res.add(x.toString()); } result = []; } return Array.from(res).map((x) => x.split( "," ).map(Number)); } // Driver code let A = [1, 2, 2]; // Function call let result = solve(A); result.sort((x, y) => { for (let i = 0; i < Math.min(x.length, y.length); i++) { if (x[i] != y[i]) { return x[i] - y[i]; } } return x.length - y.length; }); result.forEach((v) => { let temp= "" ; v.forEach((i) => { if (i!=0){ temp = temp +i + " " ; } }); console.log(temp); }); |
1 1 2 1 2 2 2 2 2
Time complexity: O(N2 * 2N)
Auxiliary space: O(2N)
Approach 3 (Bit Masking):
Prerequisite: Power Set
To solve the problem using the above approach, follow the idea below:
Represent all the numbers from 1 to 2N – 1 where N is the size of the subset in the binary format and the position for which the bits are set to be added to the array and then add that array into the result i.e to use a bit-mask pattern to generate all the combinations. For example,
Input: A = {1, 5, 6}, N = 3
Explanation: Hence we will check every number from 1 to 7 i.e.till 2n-1 = 23 – 1 = 7
1 => 001 => {6}
2 => 010 => {5}
3 => 011 => {5, 6}
4 => 100 => {1}
5 => 101 => {1, 6}
6 => 110 => {1, 5}
7 => 111 => {1, 5, 6}
Below is the implementation for the above approach:
C++
// C++ code to implement the approach #include <bits/stdc++.h> using namespace std; // Function to find the unique subsets vector<vector< int > > solve(vector< int >& v) { // To store the resulting subsets set<vector< int > > res; vector< int > subset; int size = v.size(); // Finding 2^N int N = 1 << size; for ( int i = 1; i < N; i++) { int bit = i; subset.clear(); int pos = 0; while (bit) { // If the bit is set inset // it into the subset if (bit & 1) { subset.push_back(v[pos]); } pos++; bit >>= 1; } res.insert(subset); } vector<vector< int > > result; for ( auto u : res) result.push_back(u); return result; } // Driver code int main() { vector< int > A = { 1, 2, 2 }; // Function call vector<vector< int > > result = solve(A); for ( auto v : result) { for ( int i : v) { cout << i << " " ; } cout << "\n" ; } return 0; } |
Java
// Java code to implement the approach import java.util.*; public class GFG { // Function to find the unique subsets static List<List<Integer>> solve(List<Integer> v) { // To store the resulting subsets Set<List<Integer>> res = new HashSet<List<Integer>>(); List<Integer> subset; int size = v.size(); // Finding 2^N int N = 1 << size; for ( int i = 1 ; i < N; i++) { int bit = i; subset = new ArrayList<Integer>(); int pos = 0 ; while (bit != 0 ) { // If the bit is set, insert // it into the subset if ((bit & 1 ) != 0 ) { subset.add(v.get(pos)); } pos++; bit >>= 1 ; } res.add(subset); } List<List<Integer>> result = new ArrayList<List<Integer>>(); for (List<Integer> u : res) result.add(u); return result; } public static void main(String[] args) { List<Integer> A = new ArrayList<Integer>(); A.add( 1 ); A.add( 2 ); A.add( 2 ); // Function call List<List<Integer>> result = solve(A); for (List<Integer> v : result) { for ( int i : v) { System.out.print(i + " " ); } System.out.println(); } } } |
Python3
# Python code to implement the approach # Function to find the unique subsets def solve(v): # To store the resulting subsets res = set () subset = [] size = len (v) # Finding 2^N N = 1 << size for i in range ( 1 ,N): bit = i subset = [] pos = 0 while bit: # If the bit is set inset # it into the subset if bit & 1 : subset.append(v[pos]) pos + = 1 bit >> = 1 res.add( tuple (subset)) result = [] iter = [x for x in res] # to store only unique arrays hashMap = {} for arr in iter : hashMap[ str (arr)] = arr result_temp = [v for _, v in hashMap.items()] for i in range ( len (result_temp)): u = result_temp[i] result.append(u) return result # Driver code A = [ 1 , 2 , 2 ] # Function call result = solve(A) print (result) # This code is contributed by akashish__ |
C#
using System; using System.Collections.Generic; public class GFG { // Function to find the unique subsets static List<List< int >> Solve(List< int > v) { // To store the resulting subsets HashSet<List< int >> res = new HashSet<List< int >>( new ListComparer< int >()); List< int > subset; int size = v.Count; // Finding 2^N int N = 1 << size; for ( int i = 1; i < N; i++) { int bit = i; subset = new List< int >(); int pos = 0; while (bit != 0) { // If the bit is set, insert // it into the subset if ((bit & 1) != 0) { subset.Add(v[pos]); } pos++; bit >>= 1; } res.Add(subset); } List<List< int >> result = new List<List< int >>(); foreach (List< int > u in res) { result.Add(u); } return result; } public static void Main() { List< int > A = new List< int >(); A.Add(1); A.Add(2); A.Add(2); // Function call List<List< int >> result = Solve(A); foreach (List< int > v in result) { foreach ( int i in v) { Console.Write(i + " " ); } Console.WriteLine(); } } // Custom comparer for list of integers class ListComparer<T> : IEqualityComparer<List<T>> { public bool Equals(List<T> x, List<T> y) { if (x.Count != y.Count) { return false ; } for ( int i = 0; i < x.Count; i++) { if (!x[i].Equals(y[i])) { return false ; } } return true ; } public int GetHashCode(List<T> obj) { int hash = 17; foreach (T item in obj) { hash = hash * 31 + item.GetHashCode(); } return hash; } } } // This code is contributed by akashish__ |
Javascript
// JS code to implement the approach // Function to find the unique subsets function solve(v) { // To store the resulting subsets let res = new Set() subset = []; let size = v.length; // Finding 2^N let N = 1 << size; for (let i = 1; i < N; i++) { let bit = i; subset = []; let pos = 0; while (bit) { // If the bit is set inset // it into the subset if (bit & 1) { subset.push(v[pos]); } pos++; bit >>= 1; } res.add(subset); } let result = []; const iter = [...res]; // to store only unique arrays let hashMap = {} iter.forEach( function (arr) { hashMap[arr.join( "|" )] = arr; }); let result_temp = Object.keys(hashMap).map( function (k) { return hashMap[k] }) for (let i = 0; i < result_temp.length; i++) { let u = result_temp[i]; result.push(u); } return result; } // Driver code let A = [1, 2, 2]; // Function call let result = solve(A); console.log(result); // This code is contributed by akashish__ |
1 1 2 1 2 2 2 2 2
Time Complexity: O(N2 * 2N)
Auxiliary Space: O(2N)
Please Login to comment...