Find all the possible remainders when N is divided by all positive integers from 1 to N+1
Given a large integer N, the task is to find all the possible remainders when N is divided by all the positive integers from 1 to N + 1.
Examples:
Input: N = 5
Output: 0 1 2 5
5 % 1 = 0
5 % 2 = 1
5 % 3 = 2
5 % 4 = 1
5 % 5 = 0
5 % 6 = 5Input: N = 11
Output: 0 1 2 3 5 11
Naive approach: Run a loop from 1 to N + 1 and return all the unique remainders found when dividing N by any integer from the range. But this approach is not efficient for larger values of N.
Efficient approach: It can be observed that one part of the answer will always contain numbers between 0 to ceil(sqrt(n)). It can be proven by running the naive algorithm on smaller values of N and checking the remainders obtained or by solving the equation ceil(N / k) = x or x ≤ (N / k) < x + 1 where x is one of the remainders for all integers k when N is divided by k for k from 1 to N + 1.
The solution to the above inequality is nothing but integers k from (N / (x + 1), N / x] of length N / x – N / (x + 1) = N / (x2 + x). Therefore, iterate from k = 1 to ceil(sqrt(N)) and store all the unique N % k. What if the above k is greater than ceil(sqrt(N))? They will always correspond to values 0 ≤ x < ceil(sqrt(N)). So, again start storing remainders from N / (ceil(sqrt(N)) – 1 to 0 and return the final answer with all the possible remainders.
Below is the implementation of the above approach:
C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; typedef long long int ll; // Function to find all the distinct // remainders when n is divided by // all the elements from // the range [1, n + 1] void findRemainders(ll n) { // Set will be used to store // the remainders in order // to eliminate duplicates set<ll> vc; // Find the remainders for (ll i = 1; i <= ceil ( sqrt (n)); i++) vc.insert(n / i); for (ll i = n / ceil ( sqrt (n)) - 1; i >= 0; i--) vc.insert(i); // Print the contents of the set for ( auto it : vc) cout << it << " " ; } // Driver code int main() { ll n = 5; findRemainders(n); return 0; } |
Java
// Java implementation of the approach import java.util.*; class GFG { // Function to find all the distinct // remainders when n is divided by // all the elements from // the range [1, n + 1] static void findRemainders( long n) { // Set will be used to store // the remainders in order // to eliminate duplicates HashSet<Long> vc = new HashSet<Long>(); // Find the remainders for ( long i = 1 ; i <= Math.ceil(Math.sqrt(n)); i++) vc.add(n / i); for ( long i = ( long ) (n / Math.ceil(Math.sqrt(n)) - 1 ); i >= 0 ; i--) vc.add(i); // Print the contents of the set for ( long it : vc) System.out.print(it+ " " ); } // Driver code public static void main(String[] args) { long n = 5 ; findRemainders(n); } } // This code is contributed by 29AjayKumar |
Python3
# Python3 implementation of the approach from math import ceil, floor, sqrt # Function to find all the distinct # remainders when n is divided by # all the elements from # the range [1, n + 1] def findRemainders(n): # Set will be used to store # the remainders in order # to eliminate duplicates vc = dict () # Find the remainders for i in range ( 1 , ceil(sqrt(n)) + 1 ): vc[n / / i] = 1 for i in range (n / / ceil(sqrt(n)) - 1 , - 1 , - 1 ): vc[i] = 1 # Print the contents of the set for it in sorted (vc): print (it, end = " " ) # Driver code n = 5 findRemainders(n) # This code is contributed by Mohit Kumar |
C#
// C# implementation of the approach using System; using System.Collections.Generic; class GFG { // Function to find all the distinct // remainders when n is divided by // all the elements from // the range [1, n + 1] static void findRemainders( long n) { // Set will be used to store // the remainders in order // to eliminate duplicates List< long > vc = new List< long >(); // Find the remainders for ( long i = 1; i <= Math.Ceiling(Math.Sqrt(n)); i++) vc.Add(n / i); for ( long i = ( long ) (n / Math.Ceiling(Math.Sqrt(n)) - 1); i >= 0; i--) vc.Add(i); vc.Reverse(); // Print the contents of the set foreach ( long it in vc) Console.Write(it + " " ); } // Driver code public static void Main(String[] args) { long n = 5; findRemainders(n); } } // This code is contributed by PrinciRaj1992 |
Javascript
<script> // Javascript implementation of the approach // Function to find all the distinct // remainders when n is divided by // all the elements from // the range [1, n + 1] function findRemainders(n) { // Set will be used to store // the remainders in order // to eliminate duplicates var vc = new Set(); // Find the remainders for ( var i = 1; i <= Math.ceil(Math.sqrt(n)); i++) vc.add(parseInt(n / i)); for ( var i = parseInt(n / Math.ceil(Math.sqrt(n))) - 1; i >= 0; i--) vc.add(i); // Print the contents of the set [...vc].sort((a, b) => a - b).forEach(it => { document.write(it + " " ); }); } // Driver code var n = 5; findRemainders(n); // This code is contributed by famously </script> |
0 1 2 5
Time Complexity: O(sqrt(n))
Auxiliary Space: O(sqrt(n))
Please Login to comment...