Find a triplet that sum to a given value

• Difficulty Level : Medium
• Last Updated : 04 Jun, 2021

Given an array and a value, find if there is a triplet in array whose sum is equal to the given value. If there is such a triplet present in array, then print the triplet and return true. Else return false.

Examples:

Input: array = {12, 3, 4, 1, 6, 9}, sum = 24;
Output: 12, 3, 9
Explanation: There is a triplet (12, 3 and 9) present
in the array whose sum is 24.
Input: array = {1, 2, 3, 4, 5}, sum = 9
Output: 5, 3, 1
Explanation: There is a triplet (5, 3 and 1) present
in the array whose sum is 9.

Method 1: This is the naive approach towards solving the above problem.

• Approach: A simple method is to generate all possible triplets and compare the sum of every triplet with the given value. The following code implements this simple method using three nested loops.
• Algorithm:
1. Given an array of length n and a sum s
2. Create three nested loop first loop runs from start to end (loop counter i), second loop runs from i+1 to end (loop counter j) and third loop runs from j+1 to end (loop counter k)
3. The counter of these loops represents the index of 3 elements of the triplets.
4. Find the sum of ith, jth and kth element. If the sum is equal to given sum. Print the triplet and break.
5. If there is no triplet, then print that no triplet exist.
• Implementation:

C++

 #include using namespace std;   // returns true if there is triplet with sum equal // to 'sum' present in A[]. Also, prints the triplet bool find3Numbers(int A[], int arr_size, int sum) {     int l, r;       // Fix the first element as A[i]     for (int i = 0; i < arr_size - 2; i++)     {           // Fix the second element as A[j]         for (int j = i + 1; j < arr_size - 1; j++)         {               // Now look for the third number             for (int k = j + 1; k < arr_size; k++)             {                 if (A[i] + A[j] + A[k] == sum)                 {                     cout << "Triplet is " << A[i] <<                         ", " << A[j] << ", " << A[k];                     return true;                 }             }         }     }       // If we reach here, then no triplet was found     return false; }   /* Driver code */ int main() {     int A[] = { 1, 4, 45, 6, 10, 8 };     int sum = 22;     int arr_size = sizeof(A) / sizeof(A);     find3Numbers(A, arr_size, sum);     return 0; }   // This is code is contributed by rathbhupendra

C

 #include   // returns true if there is triplet with sum equal // to 'sum' present in A[]. Also, prints the triplet bool find3Numbers(int A[], int arr_size, int sum) {     int l, r;       // Fix the first element as A[i]     for (int i = 0; i < arr_size - 2; i++) {           // Fix the second element as A[j]         for (int j = i + 1; j < arr_size - 1; j++) {               // Now look for the third number             for (int k = j + 1; k < arr_size; k++) {                 if (A[i] + A[j] + A[k] == sum) {                     printf("Triplet is %d, %d, %d",                            A[i], A[j], A[k]);                     return true;                 }             }         }     }       // If we reach here, then no triplet was found     return false; }   /* Driver program to test above function */ int main() {     int A[] = { 1, 4, 45, 6, 10, 8 };     int sum = 22;     int arr_size = sizeof(A) / sizeof(A);     find3Numbers(A, arr_size, sum);     return 0; }

Java

 // Java program to find a triplet class FindTriplet {       // returns true if there is triplet with sum equal     // to 'sum' present in A[]. Also, prints the triplet     boolean find3Numbers(int A[], int arr_size, int sum)     {         int l, r;           // Fix the first element as A[i]         for (int i = 0; i < arr_size - 2; i++) {               // Fix the second element as A[j]             for (int j = i + 1; j < arr_size - 1; j++) {                   // Now look for the third number                 for (int k = j + 1; k < arr_size; k++) {                     if (A[i] + A[j] + A[k] == sum) {                         System.out.print("Triplet is " + A[i] + ", " + A[j] + ", " + A[k]);                         return true;                     }                 }             }         }           // If we reach here, then no triplet was found         return false;     }       // Driver program to test above functions     public static void main(String[] args)     {         FindTriplet triplet = new FindTriplet();         int A[] = { 1, 4, 45, 6, 10, 8 };         int sum = 22;         int arr_size = A.length;           triplet.find3Numbers(A, arr_size, sum);     } }

Python3

 # Python3 program to find a triplet # that sum to a given value   # returns true if there is triplet with # sum equal to 'sum' present in A[]. # Also, prints the triplet def find3Numbers(A, arr_size, sum):       # Fix the first element as A[i]     for i in range( 0, arr_size-2):           # Fix the second element as A[j]         for j in range(i + 1, arr_size-1):                           # Now look for the third number             for k in range(j + 1, arr_size):                 if A[i] + A[j] + A[k] == sum:                     print("Triplet is", A[i],                           ", ", A[j], ", ", A[k])                     return True           # If we reach here, then no     # triplet was found     return False   # Driver program to test above function A = [1, 4, 45, 6, 10, 8] sum = 22 arr_size = len(A) find3Numbers(A, arr_size, sum)   # This code is contributed by Smitha Dinesh Semwal

C#

 // C# program to find a triplet // that sum to a given value using System;   class GFG {     // returns true if there is     // triplet with sum equal     // to 'sum' present in A[].     // Also, prints the triplet     static bool find3Numbers(int[] A,                              int arr_size,                              int sum)     {         // Fix the first         // element as A[i]         for (int i = 0;              i < arr_size - 2; i++) {               // Fix the second             // element as A[j]             for (int j = i + 1;                  j < arr_size - 1; j++) {                   // Now look for                 // the third number                 for (int k = j + 1;                      k < arr_size; k++) {                     if (A[i] + A[j] + A[k] == sum) {                         Console.WriteLine("Triplet is " + A[i] + ", " + A[j] + ", " + A[k]);                         return true;                     }                 }             }         }           // If we reach here,         // then no triplet was found         return false;     }       // Driver Code     static public void Main()     {         int[] A = { 1, 4, 45, 6, 10, 8 };         int sum = 22;         int arr_size = A.Length;           find3Numbers(A, arr_size, sum);     } }   // This code is contributed by m_kit



Javascript



Output

Triplet is 4, 10, 8

• Complexity Analysis:
• Time Complexity: O(n3).
There are three nested loops traversing the array, so the time complexity is O(n^3)
• Space Complexity: O(1).
As no extra space is required.

Method 2: This method uses sorting to increase the efficiency of the code.

• Approach: By Sorting the array the efficiency of the algorithm can be improved. This efficient approach uses the two-pointer technique. Traverse the array and fix the first element of the triplet. Now use the Two Pointers algorithm to find if there is a pair whose sum is equal to x – array[i]. Two pointers algorithm take linear time so it is better than a nested loop.
• Algorithm :
1. Sort the given array.
2. Loop over the array and fix the first element of the possible triplet, arr[i].
3. Then fix two pointers, one at i + 1 and the other at n – 1. And look at the sum,
1. If the sum is smaller than the required sum, increment the first pointer.
2. Else, If the sum is bigger, Decrease the end pointer to reduce the sum.
3. Else, if the sum of elements at two-pointer is equal to given sum then print the triplet and break.
• Implementation:

C++

 // C++ program to find a triplet #include using namespace std;   // returns true if there is triplet with sum equal // to 'sum' present in A[]. Also, prints the triplet bool find3Numbers(int A[], int arr_size, int sum) {     int l, r;       /* Sort the elements */     sort(A, A + arr_size);       /* Now fix the first element one by one and find the        other two elements */     for (int i = 0; i < arr_size - 2; i++) {           // To find the other two elements, start two index         // variables from two corners of the array and move         // them toward each other         l = i + 1; // index of the first element in the         // remaining elements           r = arr_size - 1; // index of the last element         while (l < r) {             if (A[i] + A[l] + A[r] == sum) {                 printf("Triplet is %d, %d, %d", A[i],                        A[l], A[r]);                 return true;             }             else if (A[i] + A[l] + A[r] < sum)                 l++;             else // A[i] + A[l] + A[r] > sum                 r--;         }     }       // If we reach here, then no triplet was found     return false; }   /* Driver program to test above function */ int main() {     int A[] = { 1, 4, 45, 6, 10, 8 };     int sum = 22;     int arr_size = sizeof(A) / sizeof(A);       find3Numbers(A, arr_size, sum);       return 0; }

Java

 // Java program to find a triplet class FindTriplet {       // returns true if there is triplet with sum equal     // to 'sum' present in A[]. Also, prints the triplet     boolean find3Numbers(int A[], int arr_size, int sum)     {         int l, r;           /* Sort the elements */         quickSort(A, 0, arr_size - 1);           /* Now fix the first element one by one and find the            other two elements */         for (int i = 0; i < arr_size - 2; i++) {               // To find the other two elements, start two index variables             // from two corners of the array and move them toward each             // other             l = i + 1; // index of the first element in the remaining elements             r = arr_size - 1; // index of the last element             while (l < r) {                 if (A[i] + A[l] + A[r] == sum) {                     System.out.print("Triplet is " + A[i] + ", " + A[l] + ", " + A[r]);                     return true;                 }                 else if (A[i] + A[l] + A[r] < sum)                     l++;                   else // A[i] + A[l] + A[r] > sum                     r--;             }         }           // If we reach here, then no triplet was found         return false;     }       int partition(int A[], int si, int ei)     {         int x = A[ei];         int i = (si - 1);         int j;           for (j = si; j <= ei - 1; j++) {             if (A[j] <= x) {                 i++;                 int temp = A[i];                 A[i] = A[j];                 A[j] = temp;             }         }         int temp = A[i + 1];         A[i + 1] = A[ei];         A[ei] = temp;         return (i + 1);     }       /* Implementation of Quick Sort     A[] --> Array to be sorted     si  --> Starting index     ei  --> Ending index      */     void quickSort(int A[], int si, int ei)     {         int pi;           /* Partitioning index */         if (si < ei) {             pi = partition(A, si, ei);             quickSort(A, si, pi - 1);             quickSort(A, pi + 1, ei);         }     }       // Driver program to test above functions     public static void main(String[] args)     {         FindTriplet triplet = new FindTriplet();         int A[] = { 1, 4, 45, 6, 10, 8 };         int sum = 22;         int arr_size = A.length;           triplet.find3Numbers(A, arr_size, sum);     } }

Python3

 # Python3 program to find a triplet   # returns true if there is triplet # with sum equal to 'sum' present # in A[]. Also, prints the triplet def find3Numbers(A, arr_size, sum):       # Sort the elements     A.sort()       # Now fix the first element     # one by one and find the     # other two elements     for i in range(0, arr_size-2):                 # To find the other two elements,         # start two index variables from         # two corners of the array and         # move them toward each other                   # index of the first element         # in the remaining elements         l = i + 1                   # index of the last element         r = arr_size-1         while (l < r):                       if( A[i] + A[l] + A[r] == sum):                 print("Triplet is", A[i],                      ', ', A[l], ', ', A[r]);                 return True                           elif (A[i] + A[l] + A[r] < sum):                 l += 1             else: # A[i] + A[l] + A[r] > sum                 r -= 1       # If we reach here, then     # no triplet was found     return False   # Driver program to test above function A = [1, 4, 45, 6, 10, 8] sum = 22 arr_size = len(A)   find3Numbers(A, arr_size, sum)   # This is contributed by Smitha Dinesh Semwal

C#

 // C# program to find a triplet using System;   class GFG {       // returns true if there is triplet     // with sum equal to 'sum' present     // in A[]. Also, prints the triplet     bool find3Numbers(int[] A, int arr_size,                       int sum)     {         int l, r;           /* Sort the elements */         quickSort(A, 0, arr_size - 1);           /* Now fix the first element     one by one and find the     other two elements */         for (int i = 0; i < arr_size - 2; i++) {               // To find the other two elements,             // start two index variables from             // two corners of the array and             // move them toward each other             l = i + 1; // index of the first element             // in the remaining elements             r = arr_size - 1; // index of the last element             while (l < r) {                 if (A[i] + A[l] + A[r] == sum) {                     Console.Write("Triplet is " + A[i] + ", " + A[l] + ", " + A[r]);                     return true;                 }                 else if (A[i] + A[l] + A[r] < sum)                     l++;                   else // A[i] + A[l] + A[r] > sum                     r--;             }         }           // If we reach here, then         // no triplet was found         return false;     }       int partition(int[] A, int si, int ei)     {         int x = A[ei];         int i = (si - 1);         int j;           for (j = si; j <= ei - 1; j++) {             if (A[j] <= x) {                 i++;                 int temp = A[i];                 A[i] = A[j];                 A[j] = temp;             }         }         int temp1 = A[i + 1];         A[i + 1] = A[ei];         A[ei] = temp1;         return (i + 1);     }       /* Implementation of Quick Sort A[] --> Array to be sorted si --> Starting index ei --> Ending index */     void quickSort(int[] A, int si, int ei)     {         int pi;           /* Partitioning index */         if (si < ei) {             pi = partition(A, si, ei);             quickSort(A, si, pi - 1);             quickSort(A, pi + 1, ei);         }     }       // Driver Code     static void Main()     {         GFG triplet = new GFG();         int[] A = new int[] { 1, 4, 45, 6, 10, 8 };         int sum = 22;         int arr_size = A.Length;           triplet.find3Numbers(A, arr_size, sum);     } }   // This code is contributed by mits

PHP

 sum                 \$r--;         }     }       // If we reach here, then     // no triplet was found     return false; }   // Driver Code \$A = array (1, 4, 45, 6, 10, 8); \$sum = 22; \$arr_size = sizeof(\$A);   find3Numbers(\$A, \$arr_size, \$sum);   // This code is contributed by ajit ?>

Javascript



Output

Triplet is 4, 8, 10
• Complexity Analysis:
• Time complexity: O(N^2).
There are only two nested loops traversing the array, so time complexity is O(n^2). Two pointers algorithm takes O(n) time and the first element can be fixed using another nested traversal.
• Space Complexity: O(1).
As no extra space is required.

Method 3: This is a Hashing-based solution.

• Approach: This approach uses extra space but is simpler than the two-pointers approach. Run two loops outer loop from start to end and inner loop from i+1 to end. Create a hashmap or set to store the elements in between i+1 to j-1. So if the given sum is x, check if there is a number in the set which is equal to x – arr[i] – arr[j]. If yes print the triplet.

• Algorithm:
1. Traverse the array from start to end. (loop counter i)
2. Create a HashMap or set to store unique pairs.
3. Run another loop from i+1 to end of the array. (loop counter j)
4. If there is an element in the set which is equal to x- arr[i] – arr[j], then print the triplet (arr[i], arr[j], x-arr[i]-arr[j]) and break
5. Insert the jth element in the set.
• Implementation:

C++

 // C++ program to find a triplet using Hashing #include using namespace std;   // returns true if there is triplet with sum equal // to 'sum' present in A[]. Also, prints the triplet bool find3Numbers(int A[], int arr_size, int sum) {     // Fix the first element as A[i]     for (int i = 0; i < arr_size - 2; i++)     {           // Find pair in subarray A[i+1..n-1]         // with sum equal to sum - A[i]         unordered_set s;         int curr_sum = sum - A[i];         for (int j = i + 1; j < arr_size; j++)         {             if (s.find(curr_sum - A[j]) != s.end())             {                 printf("Triplet is %d, %d, %d", A[i],                        A[j], curr_sum - A[j]);                 return true;             }             s.insert(A[j]);         }     }       // If we reach here, then no triplet was found     return false; }   /* Driver program to test above function */ int main() {     int A[] = { 1, 4, 45, 6, 10, 8 };     int sum = 22;     int arr_size = sizeof(A) / sizeof(A);       find3Numbers(A, arr_size, sum);       return 0; }

Java

 // Java program to find a triplet using Hashing import java.util.*;   class GFG {       // returns true if there is triplet     // with sum equal to 'sum' present     // in A[]. Also, prints the triplet     static boolean find3Numbers(int A[],                                 int arr_size, int sum)     {         // Fix the first element as A[i]         for (int i = 0; i < arr_size - 2; i++) {               // Find pair in subarray A[i+1..n-1]             // with sum equal to sum - A[i]             HashSet s = new HashSet();             int curr_sum = sum - A[i];             for (int j = i + 1; j < arr_size; j++)             {                 if (s.contains(curr_sum - A[j]))                 {                     System.out.printf("Triplet is %d,                                         %d, %d", A[i],                                       A[j], curr_sum - A[j]);                     return true;                 }                 s.add(A[j]);             }         }           // If we reach here, then no triplet was found         return false;     }       /* Driver code */     public static void main(String[] args)     {         int A[] = { 1, 4, 45, 6, 10, 8 };         int sum = 22;         int arr_size = A.length;           find3Numbers(A, arr_size, sum);     } }   // This code has been contributed by 29AjayKumar

Python3

 # Python3 program to find a triplet using Hashing # returns true if there is triplet with sum equal # to 'sum' present in A[]. Also, prints the triplet def find3Numbers(A, arr_size, sum):     for i in range(0, arr_size-1):         # Find pair in subarray A[i + 1..n-1]         # with sum equal to sum - A[i]         s = set()         curr_sum = sum - A[i]         for j in range(i + 1, arr_size):             if (curr_sum - A[j]) in s:                 print("Triplet is", A[i],                         ", ", A[j], ", ", curr_sum-A[j])                 return True             s.add(A[j])           return False   # Driver program to test above function A = [1, 4, 45, 6, 10, 8] sum = 22 arr_size = len(A) find3Numbers(A, arr_size, sum)   # This is contributed by Yatin gupta

C#

 // C# program to find a triplet using Hashing using System; using System.Collections.Generic; public class GFG {       // returns true if there is triplet     // with sum equal to 'sum' present     // in A[]. Also, prints the triplet     static bool find3Numbers(int[] A,                              int arr_size, int sum)     {         // Fix the first element as A[i]         for (int i = 0; i < arr_size - 2; i++) {               // Find pair in subarray A[i+1..n-1]             // with sum equal to sum - A[i]             HashSet s = new HashSet();             int curr_sum = sum - A[i];             for (int j = i + 1; j < arr_size; j++)             {                 if (s.Contains(curr_sum - A[j]))                 {                     Console.Write("Triplet is {0}, {1}, {2}", A[i],                                   A[j], curr_sum - A[j]);                     return true;                 }                 s.Add(A[j]);             }         }           // If we reach here, then no triplet was found         return false;     }       /* Driver code */     public static void Main()     {         int[] A = { 1, 4, 45, 6, 10, 8 };         int sum = 22;         int arr_size = A.Length;           find3Numbers(A, arr_size, sum);     } }   /* This code contributed by PrinciRaj1992 */

Javascript



Output:

Triplet is 4, 8, 10

Time complexity: O(N^2)
Auxiliary Space: O(N)