# Find the repeating and the missing | Added 3 new methods

• Difficulty Level : Medium
• Last Updated : 06 Oct, 2021

Given an unsorted array of size n. Array elements are in the range from 1 to n. One number from set {1, 2, …n} is missing and one number occurs twice in the array. Find these two numbers.

Examples:

Become a success story instead of just reading about them. Prepare for coding interviews at Amazon and other top product-based companies with our Amazon Test Series. Includes topic-wise practice questions on all important DSA topics along with 10 practice contests of 2 hours each. Designed by industry experts that will surely help you practice and sharpen your programming skills. Wait no more, start your preparation today!

``` Input: arr[] = {3, 1, 3}
Output: Missing = 2, Repeating = 3
Explanation: In the array,
2 is missing and 3 occurs twice

Input: arr[] = {4, 3, 6, 2, 1, 1}
Output: Missing = 5, Repeating = 1```

Below are various methods to solve the problems:

Method 1 (Use Sorting)
Approach:

• Sort the input array.
• Traverse the array and check for missing and repeating.

Time Complexity: O(nLogn)

Thanks to LoneShadow for suggesting this method.

Method 2 (Use count array)
Approach:

• Create a temp array temp[] of size n with all initial values as 0.
• Traverse the input array arr[], and do following for each arr[i]
• if(temp[arr[i]] == 0) temp[arr[i]] = 1;
• if(temp[arr[i]] == 1) output “arr[i]” //repeating
• Traverse temp[] and output the array element having value as 0 (This is the missing element)

Time Complexity: O(n)

Auxiliary Space: O(n)

Method 3 (Use elements as Index and mark the visited places)
Approach:
Traverse the array. While traversing, use the absolute value of every element as an index and make the value at this index as negative to mark it visited. If something is already marked negative then this is the repeating element. To find missing, traverse the array again and look for a positive value.

## C++

 `// C++ program to Find the repeating` `// and missing elements`   `#include ` `using` `namespace` `std;`   `void` `printTwoElements(``int` `arr[], ``int` `size)` `{` `    ``int` `i;` `    ``cout << ``" The repeating element is "``;`   `    ``for` `(i = 0; i < size; i++) {` `        ``if` `(arr[``abs``(arr[i]) - 1] > 0)` `            ``arr[``abs``(arr[i]) - 1] = -arr[``abs``(arr[i]) - 1];` `        ``else` `            ``cout << ``abs``(arr[i]) << ``"\n"``;` `    ``}`   `    ``cout << ``"and the missing element is "``;` `    ``for` `(i = 0; i < size; i++) {` `        ``if` `(arr[i] > 0)` `            ``cout << (i + 1);` `    ``}` `}`   `/* Driver code */` `int` `main()` `{` `    ``int` `arr[] = { 7, 3, 4, 5, 5, 6, 2 };` `    ``int` `n = ``sizeof``(arr) / ``sizeof``(arr);` `    ``printTwoElements(arr, n);` `}`   `// This code is contributed by Shivi_Aggarwal`

## C

 `// C program to Find the repeating` `// and missing elements`   `#include ` `#include `   `void` `printTwoElements(``int` `arr[], ``int` `size)` `{` `    ``int` `i;` `    ``printf``(``"\n The repeating element is"``);`   `    ``for` `(i = 0; i < size; i++) {` `        ``if` `(arr[``abs``(arr[i]) - 1] > 0)` `            ``arr[``abs``(arr[i]) - 1] = -arr[``abs``(arr[i]) - 1];` `        ``else` `            ``printf``(``" %d "``, ``abs``(arr[i]));` `    ``}`   `    ``printf``(``"\nand the missing element is "``);` `    ``for` `(i = 0; i < size; i++) {` `        ``if` `(arr[i] > 0)` `            ``printf``(``"%d"``, i + 1);` `    ``}` `}`   `// Driver code` `int` `main()` `{` `    ``int` `arr[] = { 7, 3, 4, 5, 5, 6, 2 };` `    ``int` `n = ``sizeof``(arr) / ``sizeof``(arr);` `    ``printTwoElements(arr, n);` `    ``return` `0;` `}`

## Java

 `// Java program to Find the repeating` `// and missing elements`   `import` `java.io.*;`   `class` `GFG {`   `    ``static` `void` `printTwoElements(``int` `arr[], ``int` `size)` `    ``{` `        ``int` `i;` `        ``System.out.print(``"The repeating element is "``);`   `        ``for` `(i = ``0``; i < size; i++) {` `            ``int` `abs_val = Math.abs(arr[i]);` `            ``if` `(arr[abs_val - ``1``] > ``0``)` `                ``arr[abs_val - ``1``] = -arr[abs_val - ``1``];` `            ``else` `                ``System.out.println(abs_val);` `        ``}`   `        ``System.out.print(``"And the missing element is "``);` `        ``for` `(i = ``0``; i < size; i++) {` `            ``if` `(arr[i] > ``0``)` `                ``System.out.println(i + ``1``);` `        ``}` `    ``}`   `    ``// Driver code` `    ``public` `static` `void` `main(String[] args)` `    ``{` `        ``int` `arr[] = { ``7``, ``3``, ``4``, ``5``, ``5``, ``6``, ``2` `};` `        ``int` `n = arr.length;` `        ``printTwoElements(arr, n);` `    ``}` `}`   `// This code is contributed by Gitanjali`

## Python3

 `# Python3 code to Find the repeating ` `# and the missing elements`   `def` `printTwoElements( arr, size):` `    ``for` `i ``in` `range``(size):` `        ``if` `arr[``abs``(arr[i])``-``1``] > ``0``:` `            ``arr[``abs``(arr[i])``-``1``] ``=` `-``arr[``abs``(arr[i])``-``1``]` `        ``else``:` `            ``print``(``"The repeating element is"``, ``abs``(arr[i]))` `            `  `    ``for` `i ``in` `range``(size):` `        ``if` `arr[i]>``0``:` `            ``print``(``"and the missing element is"``, i ``+` `1``)`   `# Driver program to test above function */` `arr ``=` `[``7``, ``3``, ``4``, ``5``, ``5``, ``6``, ``2``]` `n ``=` `len``(arr)` `printTwoElements(arr, n)`   `# This code is contributed by "Abhishek Sharma 44"`

## C#

 `// C# program to Find the repeating` `// and missing elements`   `using` `System;`   `class` `GFG {` `    ``static` `void` `printTwoElements(``int``[] arr, ``int` `size)` `    ``{` `        ``int` `i;` `        ``Console.Write(``"The repeating element is "``);`   `        ``for` `(i = 0; i < size; i++) {` `            ``int` `abs_val = Math.Abs(arr[i]);` `            ``if` `(arr[abs_val - 1] > 0)` `                ``arr[abs_val - 1] = -arr[abs_val - 1];` `            ``else` `                ``Console.WriteLine(abs_val);` `        ``}`   `        ``Console.Write(``"And the missing element is "``);` `        ``for` `(i = 0; i < size; i++) {` `            ``if` `(arr[i] > 0)` `                ``Console.WriteLine(i + 1);` `        ``}` `    ``}`   `    ``// Driver program` `    ``public` `static` `void` `Main()` `    ``{` `        ``int``[] arr = { 7, 3, 4, 5, 5, 6, 2 };` `        ``int` `n = arr.Length;` `        ``printTwoElements(arr, n);` `    ``}` `}` `// This code is contributed by Sam007`

## PHP

 ` 0)` `            ``\$arr``[``abs``(``\$arr``[``\$i``]) - 1] = ` `            ``- ``\$arr``[``abs``(``\$arr``[``\$i``]) - 1];` `        ``else` `            ``echo` `( ``abs``(``\$arr``[``\$i``]));` `    ``}`   `    ``echo` `"\nand the missing element is "``;` `    ``for``(``\$i` `= 0; ``\$i` `< ``\$size``; ``\$i``++)` `    ``{` `        ``if``(``\$arr``[``\$i``] > 0)` `            ``echo``(``\$i` `+ 1);` `    ``}` `}` `    `  `    ``// Driver Code` `    ``\$arr` `= ``array``(7, 3, 4, 5, 5, 6, 2);` `    ``\$n` `= ``count``(``\$arr``);` `    ``printTwoElements(``\$arr``, ``\$n``);`   `// This code is contributed by anuj_67.` `?>`

## Javascript

 ``

Output

``` The repeating element is 5
and the missing element is 1```

Time Complexity: O(n)
Thanks to Manish Mishra for suggesting this method.

Method 4 (Make two equations)
Approach:

• Let x be the missing and y be the repeating element.
• Get the sum of all numbers using formula S = n(n+1)/2 – x + y
• Get product of all numbers using formula P = 1*2*3*…*n * y / x
• The above two steps give us two equations, we can solve the equations and get the values of x and y.

Time Complexity: O(n)
Thanks to disappearedng for suggesting this solution.

Note: This method can cause arithmetic overflow as we calculate product and sum of all array elements.

Method 5 (Use XOR)

Approach:

• Let x and y be the desired output elements.
• Calculate XOR of all the array elements.

xor1 = arr^arr^arr…..arr[n-1]

• XOR the result with all numbers from 1 to n

xor1 = xor1^1^2^…..^n

• In the result xor1, all elements would nullify each other except x and y. All the bits that are set in xor1 will be set in either x or y. So if we take any set bit (We have chosen the rightmost set bit in code) of xor1 and divide the elements of the array in two sets – one set of elements with same bit set and other set with same bit not set. By doing so, we will get x in one set and y in another set. Now if we do XOR of all the elements in first set, we will get x, and by doing same in other set we will get y.

Below is the implementation of the above approach:

## C++

 `// C++ program to Find the repeating` `// and missing elements`   `#include ` `using` `namespace` `std;`   `/* The output of this function is stored at` `*x and *y */` `void` `getTwoElements(``int` `arr[], ``int` `n,` `                    ``int``* x, ``int``* y)` `{` `    ``/* Will hold xor of all elements ` `    ``and numbers from 1 to n */` `    ``int` `xor1;`   `    ``/* Will have only single set bit of xor1 */` `    ``int` `set_bit_no;`   `    ``int` `i;` `    ``*x = 0;` `    ``*y = 0;`   `    ``xor1 = arr;`   `    ``/* Get the xor of all array elements */` `    ``for` `(i = 1; i < n; i++)` `        ``xor1 = xor1 ^ arr[i];`   `    ``/* XOR the previous result with numbers ` `    ``from 1 to n*/` `    ``for` `(i = 1; i <= n; i++)` `        ``xor1 = xor1 ^ i;`   `    ``/* Get the rightmost set bit in set_bit_no */` `    ``set_bit_no = xor1 & ~(xor1 - 1);`   `    ``/* Now divide elements into two ` `    ``sets by comparing a rightmost set` `    ``bit of xor1 with the bit at the same ` `    ``position in each element. Also, ` `    ``get XORs of two sets. The two` `    ``XORs are the output elements. ` `    ``The following two for loops ` `    ``serve the purpose */` `    ``for` `(i = 0; i < n; i++) {` `        ``if` `(arr[i] & set_bit_no)` `            ``/* arr[i] belongs to first set */` `            ``*x = *x ^ arr[i];`   `        ``else` `            ``/* arr[i] belongs to second set*/` `            ``*y = *y ^ arr[i];` `    ``}` `    ``for` `(i = 1; i <= n; i++) {` `        ``if` `(i & set_bit_no)` `            ``/* i belongs to first set */` `            ``*x = *x ^ i;`   `        ``else` `            ``/* i belongs to second set*/` `            ``*y = *y ^ i;` `    ``}`   `    ``/* *x and *y hold the desired` `        ``output elements */` `}`   `/* Driver code */` `int` `main()` `{` `    ``int` `arr[] = { 1, 3, 4, 5, 5, 6, 2 };` `    ``int``* x = (``int``*)``malloc``(``sizeof``(``int``));` `    ``int``* y = (``int``*)``malloc``(``sizeof``(``int``));` `    ``int` `n = ``sizeof``(arr) / ``sizeof``(arr);`   `    ``getTwoElements(arr, n, x, y);` `    ``cout << ``" The missing element is "` `<< *x << ``" and the repeating"` `         ``<< ``" number is "` `<< *y;` `    ``getchar``();` `}`   `// This code is contributed by Code_Mech`

## C

 `// C program to Find the repeating` `// and missing elements`   `#include ` `#include `   `/* The output of this function is stored at` `   ``*x and *y */` `void` `getTwoElements(``int` `arr[], ``int` `n, ``int``* x, ``int``* y)` `{` `    ``/* Will hold xor of all elements and numbers ` `       ``from 1 to n */` `    ``int` `xor1;`   `    ``/* Will have only single set bit of xor1 */` `    ``int` `set_bit_no;`   `    ``int` `i;` `    ``*x = 0;` `    ``*y = 0;`   `    ``xor1 = arr;`   `    ``/* Get the xor of all array elements */` `    ``for` `(i = 1; i < n; i++)` `        ``xor1 = xor1 ^ arr[i];`   `    ``/* XOR the previous result with numbers ` `       ``from 1 to n*/` `    ``for` `(i = 1; i <= n; i++)` `        ``xor1 = xor1 ^ i;`   `    ``/* Get the rightmost set bit in set_bit_no */` `    ``set_bit_no = xor1 & ~(xor1 - 1);`   `    ``/* Now divide elements in two sets by comparing ` `    ``rightmost set bit of xor1 with bit at same ` `    ``position in each element. Also, get XORs of two ` `    ``sets. The two XORs are the output elements. The` `    ``following two for loops serve the purpose */` `    ``for` `(i = 0; i < n; i++) {` `        ``if` `(arr[i] & set_bit_no)` `            ``/* arr[i] belongs to first set */` `            ``*x = *x ^ arr[i];`   `        ``else` `            ``/* arr[i] belongs to second set*/` `            ``*y = *y ^ arr[i];` `    ``}` `    ``for` `(i = 1; i <= n; i++) {` `        ``if` `(i & set_bit_no)` `            ``/* i belongs to first set */` `            ``*x = *x ^ i;`   `        ``else` `            ``/* i belongs to second set*/` `            ``*y = *y ^ i;` `    ``}`   `    ``/* *x and *y hold the desired output elements */` `}`   `/* Driver program to test above function */` `int` `main()` `{` `    ``int` `arr[] = { 1, 3, 4, 5, 5, 6, 2 };` `    ``int``* x = (``int``*)``malloc``(``sizeof``(``int``));` `    ``int``* y = (``int``*)``malloc``(``sizeof``(``int``));` `    ``int` `n = ``sizeof``(arr) / ``sizeof``(arr);`   `    ``getTwoElements(arr, n, x, y);` `    ``printf``(``" The missing element is %d"` `           ``" and the repeating number"` `           ``" is %d"``,` `           ``*x, *y);` `    ``getchar``();` `}`

## Java

 `// Java program to Find the repeating` `// and missing elements`   `import` `java.io.*;`   `class` `GFG {` `    ``static` `int` `x, y;`   `    ``static` `void` `getTwoElements(``int` `arr[], ``int` `n)` `    ``{` `        ``/* Will hold xor of all elements` `       ``and numbers from 1 to n  */` `        ``int` `xor1;`   `        ``/* Will have only single set bit of xor1 */` `        ``int` `set_bit_no;`   `        ``int` `i;` `        ``x = ``0``;` `        ``y = ``0``;`   `        ``xor1 = arr[``0``];`   `        ``/* Get the xor of all array elements  */` `        ``for` `(i = ``1``; i < n; i++)` `            ``xor1 = xor1 ^ arr[i];`   `        ``/* XOR the previous result with numbers from ` `       ``1 to n*/` `        ``for` `(i = ``1``; i <= n; i++)` `            ``xor1 = xor1 ^ i;`   `        ``/* Get the rightmost set bit in set_bit_no */` `        ``set_bit_no = xor1 & ~(xor1 - ``1``);`   `        ``/* Now divide elements into two sets by comparing` `    ``rightmost set bit of xor1 with the bit at the same ` `    ``position in each element. Also, get XORs of two` `    ``sets. The two XORs are the output elements. The ` `    ``following two for loops serve the purpose */` `        ``for` `(i = ``0``; i < n; i++) {` `            ``if` `((arr[i] & set_bit_no) != ``0``)` `                ``/* arr[i] belongs to first set */` `                ``x = x ^ arr[i];`   `            ``else` `                ``/* arr[i] belongs to second set*/` `                ``y = y ^ arr[i];` `        ``}` `        ``for` `(i = ``1``; i <= n; i++) {` `            ``if` `((i & set_bit_no) != ``0``)` `                ``/* i belongs to first set */` `                ``x = x ^ i;`   `            ``else` `                ``/* i belongs to second set*/` `                ``y = y ^ i;` `        ``}`   `        ``/* *x and *y hold the desired output elements */` `    ``}` `    ``/* Driver program to test above function */` `    ``public` `static` `void` `main(String[] args)` `    ``{` `        ``int` `arr[] = { ``1``, ``3``, ``4``, ``5``, ``1``, ``6``, ``2` `};`   `        ``int` `n = arr.length;` `        ``getTwoElements(arr, n);` `        ``System.out.println(``" The missing element is  "` `                           ``+ x + ``"and the "` `                           ``+ ``"repeating number is "` `                           ``+ y);` `    ``}` `}`   `// This code is contributed by Gitanjali.`

## Python3

 `# Python3 program to find the repeating ` `# and missing elements `   `# The output of this function is stored ` `# at x and y ` `def` `getTwoElements(arr, n):` `    `  `    ``global` `x, y` `    ``x ``=` `0` `    ``y ``=` `0` `    `  `    ``# Will hold xor of all elements ` `    ``# and numbers from 1 to n ` `    ``xor1 ``=` `arr[``0``]` `    `  `    ``# Get the xor of all array elements` `    ``for` `i ``in` `range``(``1``, n):` `        ``xor1 ``=` `xor1 ^ arr[i]` `        `  `    ``# XOR the previous result with numbers ` `    ``# from 1 to n` `    ``for` `i ``in` `range``(``1``, n ``+` `1``):` `        ``xor1 ``=` `xor1 ^ i` `    `  `    ``# Will have only single set bit of xor1` `    ``set_bit_no ``=` `xor1 & ~(xor1 ``-` `1``)` `    `  `    ``# Now divide elements into two ` `    ``# sets by comparing a rightmost set ` `    ``# bit of xor1 with the bit at the same ` `    ``# position in each element. Also, ` `    ``# get XORs of two sets. The two ` `    ``# XORs are the output elements. ` `    ``# The following two for loops ` `    ``# serve the purpose` `    ``for` `i ``in` `range``(n):` `        ``if` `(arr[i] & set_bit_no) !``=` `0``:` `            `  `            ``# arr[i] belongs to first set` `            ``x ``=` `x ^ arr[i]` `        ``else``:` `            `  `            ``# arr[i] belongs to second set` `            ``y ``=` `y ^ arr[i]` `            `  `    ``for` `i ``in` `range``(``1``, n ``+` `1``):` `        ``if` `(i & set_bit_no) !``=` `0``:` `            `  `            ``# i belongs to first set` `            ``x ``=` `x ^ i` `        ``else``:` `            `  `            ``# i belongs to second set` `            ``y ``=` `y ^ i ` `        `  `    ``# x and y hold the desired ` `    ``# output elements ` `    `  `# Driver code` `arr ``=` `[ ``1``, ``3``, ``4``, ``5``, ``5``, ``6``, ``2` `]` `n ``=` `len``(arr)` `    `  `getTwoElements(arr, n)`   `print``(``"The missing element is"``, x,` `      ``"and the repeating number is"``, y)` `    `  `# This code is contributed by stutipathak31jan`

## C#

 `// C# program to Find the repeating` `// and missing elements`   `using` `System;`   `class` `GFG {` `    ``static` `int` `x, y;`   `    ``static` `void` `getTwoElements(``int``[] arr, ``int` `n)` `    ``{` `        ``/* Will hold xor of all elements` `        ``and numbers from 1 to n */` `        ``int` `xor1;`   `        ``/* Will have only single set bit of xor1 */` `        ``int` `set_bit_no;`   `        ``int` `i;` `        ``x = 0;` `        ``y = 0;`   `        ``xor1 = arr;`   `        ``/* Get the xor of all array elements */` `        ``for` `(i = 1; i < n; i++)` `            ``xor1 = xor1 ^ arr[i];`   `        ``/* XOR the previous result with numbers from ` `        ``1 to n*/` `        ``for` `(i = 1; i <= n; i++)` `            ``xor1 = xor1 ^ i;`   `        ``/* Get the rightmost set bit in set_bit_no */` `        ``set_bit_no = xor1 & ~(xor1 - 1);`   `        ``/* Now divide elements in two sets by comparing` `        ``rightmost set bit of xor1 with bit at same ` `        ``position in each element. Also, get XORs of two` `        ``sets. The two XORs are the output elements.The ` `        ``following two for loops serve the purpose */` `        ``for` `(i = 0; i < n; i++) {` `            ``if` `((arr[i] & set_bit_no) != 0)`   `                ``/* arr[i] belongs to first set */` `                ``x = x ^ arr[i];`   `            ``else`   `                ``/* arr[i] belongs to second set*/` `                ``y = y ^ arr[i];` `        ``}` `        ``for` `(i = 1; i <= n; i++) {` `            ``if` `((i & set_bit_no) != 0)`   `                ``/* i belongs to first set */` `                ``x = x ^ i;`   `            ``else`   `                ``/* i belongs to second set*/` `                ``y = y ^ i;` `        ``}`   `        ``/* *x and *y hold the desired output elements */` `    ``}`   `    ``// Driver program` `    ``public` `static` `void` `Main()` `    ``{` `        ``int``[] arr = { 1, 3, 4, 5, 1, 6, 2 };`   `        ``int` `n = arr.Length;` `        ``getTwoElements(arr, n);` `        ``Console.Write(``" The missing element is "` `                      ``+ x + ``"and the "` `                      ``+ ``"repeating number is "` `                      ``+ y);` `    ``}` `}`   `// This code is contributed by Sam007`

## PHP

 `

Output

` The missing element is 7 and the repeating number is 5`

Time Complexity: O(n)
This method doesn’t cause overflow, but it doesn’t tell which one occurs twice and which one is missing. We can add one more step that checks which one is missing and which one is repeating. This can be easily done in O(n) time.

Method 6 (Use a Map)
Approach:
This method involves creating a Hashtable with the help of Map. In this, the elements are mapped to their natural index. In this process, if an element is mapped twice, then it is the repeating element. And if an element’s mapping is not there, then it is the missing element.

Below is the implementation of the above approach:

## C++

 `// C++ program to find the repeating` `// and missing elements using Maps ` `#include ` `#include ` `using` `namespace` `std;`   `int` `main()` `{` `    ``int` `arr[] = { 4, 3, 6, 2, 1, 1 };` `    ``int` `n = 6;` `    `  `    ``unordered_map<``int``, ``bool``> numberMap;` `    `  `    ``for``(``int` `i : arr) ` `    ``{` `        ``if` `(numberMap.find(i) == ` `            ``numberMap.end())` `        ``{` `            ``numberMap[i] = ``true``;` `        ``}` `        ``else` `        ``{` `            ``cout << ``"Repeating = "` `<< i;` `        ``}` `    ``}` `    ``cout << endl;` `    `  `    ``for``(``int` `i = 1; i <= n; i++)` `    ``{` `        ``if` `(numberMap.find(i) == ` `            ``numberMap.end()) ` `        ``{` `            ``cout << ``"Missing = "` `<< i;` `        ``}` `    ``}` `    ``return` `0;` `}`   `// This code is contributed by RohitOberoi`

## Java

 `// Java program to find the` `// repeating and missing elements` `// using Maps`   `import` `java.util.*;`   `public` `class` `Test1 {`   `    ``public` `static` `void` `main(String[] args)` `    ``{`   `        ``int``[] arr = { ``4``, ``3``, ``6``, ``2``, ``1``, ``1` `};`   `        ``Map numberMap` `            ``= ``new` `HashMap<>();`   `        ``int` `max = arr.length;`   `        ``for` `(Integer i : arr) {`   `            ``if` `(numberMap.get(i) == ``null``) {` `                ``numberMap.put(i, ``true``);` `            ``}` `            ``else` `{` `                ``System.out.println(``"Repeating = "` `+ i);` `            ``}` `        ``}` `        ``for` `(``int` `i = ``1``; i <= max; i++) {` `            ``if` `(numberMap.get(i) == ``null``) {` `                ``System.out.println(``"Missing = "` `+ i);` `            ``}` `        ``}` `    ``}` `}`

## Python3

 `# Python3 program to find the ` `# repeating and missing elements ` `# using Maps` `def` `main():` `    `  `    ``arr ``=` `[ ``4``, ``3``, ``6``, ``2``, ``1``, ``1` `]` `    `  `    ``numberMap ``=` `{}` `    `  `    ``max` `=` `len``(arr)` `    ``for` `i ``in` `arr:` `        ``if` `not` `i ``in` `numberMap:` `            ``numberMap[i] ``=` `True` `            `  `        ``else``:` `            ``print``(``"Repeating ="``, i)` `    `  `    ``for` `i ``in` `range``(``1``, ``max` `+` `1``):` `        ``if` `not` `i ``in` `numberMap:` `            ``print``(``"Missing ="``, i)` `main()`   `# This code is contributed by stutipathak31jan`

## C#

 `// C# program to find the` `// repeating and missing elements` `// using Maps` `using` `System;` `using` `System.Collections.Generic;`   `class` `GFG` `{` `    ``public` `static` `void` `Main(String[] args)` `    ``{` `        ``int``[] arr = { 4, 3, 6, 2, 1, 1 };`   `        ``Dictionary<``int``, Boolean> numberMap =` `                   ``new` `Dictionary<``int``, Boolean>();`   `        ``int` `max = arr.Length;`   `        ``foreach` `(``int` `i ``in` `arr) ` `        ``{` `            ``if` `(!numberMap.ContainsKey(i)) ` `            ``{` `                ``numberMap.Add(i, ``true``);` `            ``}` `            ``else` `            ``{` `                ``Console.WriteLine(``"Repeating = "` `+ i);` `            ``}` `        ``}` `        ``for` `(``int` `i = 1; i <= max; i++) ` `        ``{` `            ``if` `(!numberMap.ContainsKey(i)) ` `            ``{` `                ``Console.WriteLine(``"Missing = "` `+ i);` `            ``}` `        ``}` `    ``}` `}`   `// This code is contributed by PrinciRaj1992`

Output

```Repeating = 1
Missing = 5```

Method 7 (Make two equations using sum and sum of squares)
Approach:

• Let x be the missing and y be the repeating element.
• Let N is the size of array.
• Get the sum of all numbers using formula S = N(N+1)/2
• Get the sum of square of all numbers using formula Sum_Sq = N(N+1)(2N+1)/6
• Iterate through a loop from i=1….N
• S -= A[i]
• Sum_Sq -= (A[i]*A[i])
• It will give two equations
x-y = S – (1)
x^2 – y^2 = Sum_sq
x+ y = (Sum_sq/S) – (2)

Time Complexity: O(n)

## C++

 `#include `   `using` `namespace` `std;`   `vector<``int``>repeatedNumber(``const` `vector<``int``> &A) {` `    ``long` `long` `int` `len = A.size();` `    ``long` `long` `int` `Sum_N = (len * (len+1) ) /2, Sum_NSq = (len * (len +1) *(2*len +1) )/6;` `    ``long` `long` `int` `missingNumber=0, repeating=0;` `    `  `    ``for``(``int` `i=0;i ans;` `    ``ans.push_back(repeating);` `    ``ans.push_back(missingNumber);` `    ``return` `ans;` `    `  `}`     `int` `main(``void``){` `        ``std::vector<``int``> v = {4, 3, 6, 2, 1, 6,7};` `    ``vector<``int``> res = repeatedNumber(v);` `    ``for``(``int` `x: res){` `        ``cout<< x<<``"  "``;` `    ``}` `    ``cout<

## Java

 `import` `java.util.*;` `import` `java.math.BigInteger;` `class` `GFG ` `{` `    ``static` `Vector repeatedNumber(``int``[] a) ` `    ``{` `       `  `        ``BigInteger n=BigInteger.valueOf(a.length);` `  `  `        ``BigInteger s=BigInteger.valueOf(``0``);` `        ``BigInteger ss=BigInteger.valueOf(``0``);`   `        ``for``(``int` `x : a)` `        ``{` `            ``s=  s.add(BigInteger.valueOf(x));` `            ``ss= ss.add(BigInteger.valueOf(x).multiply(BigInteger.valueOf(x))); ` `        ``}`   `        ``BigInteger as= n.multiply(n.add(BigInteger.valueOf(``1``))).divide(BigInteger.valueOf(``2``));` `        ``BigInteger ass= as.multiply(BigInteger.valueOf(``2``).multiply(n).add(BigInteger.valueOf(``1``))).divide(BigInteger.valueOf(``3``));`   `        ``BigInteger sub=as.subtract(s);` `        ``BigInteger add=(ass.subtract(ss)).divide(sub);` `        ``//(ass-ss)/sub;`   `        ``int` `b = sub.add(add).divide(BigInteger.valueOf(``2``)).intValue();` `        ``//(sub+add)/2;` `        ``int` `A = BigInteger.valueOf(b).subtract(sub).intValue();` `        ``Vector ans = ``new` `Vector<>();` `        ``ans.add(A);` `        ``ans.add(b);` `        ``return` `ans;` `    ``}`   `    ``// Driver Code` `    ``public` `static` `void` `main(String[] args) ` `    ``{` `        ``int``[] v = { ``4``, ``3``, ``6``, ``2``, ``1``, ``6``, ``7` `};` `        ``Vector res = repeatedNumber(v);` `        ``for` `(``int` `x : res) ` `        ``{` `            ``System.out.print(x + ``" "``);` `        ``}` `    ``}` `}`   `// This code is contributed by Rajput-Ji`

## Python3

 `def` `repeatedNumber(A):` `    `  `    ``length ``=` `len``(A)` `    ``Sum_N ``=` `(length ``*` `(length ``+` `1``)) ``/``/` `2` `    ``Sum_NSq ``=` `((length ``*` `(length ``+` `1``) ``*` `                     ``(``2` `*` `length ``+` `1``)) ``/``/` `6``)` `    `  `    ``missingNumber, repeating ``=` `0``, ``0` `    `  `    ``for` `i ``in` `range``(``len``(A)):` `        ``Sum_N ``-``=` `A[i]` `        ``Sum_NSq ``-``=` `A[i] ``*` `A[i]` `        `  `    ``missingNumber ``=` `(Sum_N ``+` `Sum_NSq ``/``/` `                             ``Sum_N) ``/``/` `2` `    ``repeating ``=` `missingNumber ``-` `Sum_N` `    `  `    ``ans ``=` `[]` `    ``ans.append(repeating)` `    ``ans.append(missingNumber)` `    `  `    ``return` `ans`   `# Driver code` `v ``=` `[ ``4``, ``3``, ``6``, ``2``, ``1``, ``6``, ``7` `]` `res ``=` `repeatedNumber(v)`   `for` `i ``in` `res:` `    ``print``(i, end ``=` `" "``)`   `# This code is contributed by stutipathak31jan `

## C#

 `using` `System;` `using` `System.Collections.Generic;`   `class` `GFG ` `{` `    ``static` `List<``int``> repeatedNumber(``int``[] A) ` `    ``{` `        ``int` `len = A.Length;` `        ``int` `Sum_N = (len * (len + 1)) / 2;` `        ``int` `Sum_NSq = (len * (len + 1) * ` `                        ``(2 * len + 1)) / 6;` `        ``int` `missingNumber = 0, repeating = 0;`   `        ``for` `(``int` `i = 0; i < A.Length; i++) ` `        ``{` `            ``Sum_N -= A[i];` `            ``Sum_NSq -= A[i] * A[i];` `        ``}`   `        ``missingNumber = (Sum_N + Sum_NSq / ` `                                 ``Sum_N) / 2;` `        ``repeating = missingNumber - Sum_N;` `        ``List<``int``> ans = ``new` `List<``int``>();` `        ``ans.Add(repeating);` `        ``ans.Add(missingNumber);` `        ``return` `ans;` `    ``}`   `    ``// Driver Code` `    ``public` `static` `void` `Main(String[] args) ` `    ``{` `        ``int``[] v = { 4, 3, 6, 2, 1, 6, 7 };` `        ``List<``int``> res = repeatedNumber(v);` `        ``foreach` `(``int` `x ``in` `res) ` `        ``{` `            ``Console.Write(x + ``" "``);` `        ``}` `    ``}` `}`   `// This code is contributed by PrinciRaj1992`

Output

```6  5
```

Please write comments if you find the above codes/algorithms incorrect, or find other ways to solve the same problem.

Method 8 (Using OR Operator):

Approach:

Given an input array

1. Performing OR operation on input array.
2. At the same time checking if that number has occurred before, by determining if the position is already set or not. We will get the repeating number in this step.
3. To find missing value we have to check the bit containing 0 using OR again.

## C++

 `#include ` `using` `namespace` `std;`   `int` `main()` `{` `    ``// Input:` `    ``vector<``int``> arr = {4, 3, 6, 2, 1, 1};` `    ``int` `n = arr.size();` `    `  `    ``// Declaring output variables` `    ``// Note : arr[i]-1 is used instead of arr[i] as we want to use all 64 bits` `    ``int` `bitOr = (1 << (arr-1));` `    ``int` `repeating, missing;` `    `  `    ``// Performing XOR as well as Checking repeating number` `    ``for``(``int` `i=1; i

Output

```Repeating : 1
Missing : 5```

Time Complexity : O(n)
Auxiliary Complexity : O(1)

Limitations of the approach: it only works on size of array <= 64 if we use long and size of array <= 32

My Personal Notes arrow_drop_up
Recommended Articles
Page :