Find a permutation that causes worst case of Merge Sort
Given a set of elements, find which permutation of these elements would result in worst case of Merge Sort.
Asymptotically, merge sort always takes O(n Log n) time, but the cases that require more comparisons generally take more time in practice. We basically need to find a permutation of input elements that would lead to maximum number of comparisons when sorted using a typical Merge Sort algorithm.
Example:
Consider the below set of elements {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16} Below permutation of the set causes 153 comparisons. {1, 9, 5, 13, 3, 11, 7, 15, 2, 10, 6, 14, 4, 12, 8, 16} And an already sorted permutation causes 30 comparisons. See this for a program that counts comparisons and shows above results.
Now how to get worst case input for merge sort for an input set?
Lets us try to build the array in bottom up manner
Let the sorted array be {1,2,3,4,5,6,7,8}.
In order to generate the worst case of merge sort, the merge operation that resulted in above sorted array should result in maximum comparisons. In order to do so, the left and right sub-array involved in merge operation should store alternate elements of sorted array. i.e. left sub-array should be {1,3,5,7} and right sub-array should be {2,4,6,8}. Now every element of array will be compared at-least once and that will result in maximum comparisons. We apply the same logic for left and right sub-array as well. For array {1,3,5,7}, the worst case will be when its left and right sub-array are {1,5} and {3,7} respectively and for array {2,4,6,8} the worst case will occur for {2,4} and {6,8}.
Complete Algorithm –
GenerateWorstCase(arr[])
- Create two auxiliary arrays left and right and store alternate array elements in them.
- Call GenerateWorstCase for left subarray: GenerateWorstCase (left)
- Call GenerateWorstCase for right subarray: GenerateWorstCase (right)
- Copy all elements of left and right subarrays back to original array.
Below is the implementation of the idea
C++
// C++ program to generate Worst Case // of Merge Sort #include <bits/stdc++.h> using namespace std; // Function to print an array void printArray( int A[], int size) { for ( int i = 0; i < size; i++) { cout << A[i] << " " ; } cout << endl; } // Function to join left and right subarray int join( int arr[], int left[], int right[], int l, int m, int r) { int i; for (i = 0; i <= m - l; i++) arr[i] = left[i]; for ( int j = 0; j < r - m; j++) { arr[i + j] = right[j]; } } // Function to store alternate elements in // left and right subarray int split( int arr[], int left[], int right[], int l, int m, int r) { for ( int i = 0; i <= m - l; i++) left[i] = arr[i * 2]; for ( int i = 0; i < r - m; i++) right[i] = arr[i * 2 + 1]; } // Function to generate Worst Case // of Merge Sort int generateWorstCase( int arr[], int l, int r) { if (l < r) { int m = l + (r - l) / 2; // Create two auxiliary arrays int left[m - l + 1]; int right[r - m]; // Store alternate array elements // in left and right subarray split(arr, left, right, l, m, r); // Recurse first and second halves generateWorstCase(left, l, m); generateWorstCase(right, m + 1, r); // Join left and right subarray join(arr, left, right, l, m, r); } } // Driver code int main() { // Sorted array int arr[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 }; int n = sizeof (arr) / sizeof (arr[0]); cout << "Sorted array is \n" ; printArray(arr, n); // Generate Worst Case of Merge Sort generateWorstCase(arr, 0, n - 1); cout << "\nInput array that will result " << "in worst case of merge sort is \n" ; printArray(arr, n); return 0; } // This code is contributed by Mayank Tyagi |
C
// C program to generate Worst Case of Merge Sort #include <stdlib.h> #include <stdio.h> // Function to print an array void printArray( int A[], int size) { for ( int i = 0; i < size; i++) printf ( "%d " , A[i]); printf ( "\n" ); } // Function to join left and right subarray int join( int arr[], int left[], int right[], int l, int m, int r) { int i; // Used in second loop for (i = 0; i <= m - l; i++) arr[i] = left[i]; for ( int j = 0; j < r - m; j++) arr[i + j] = right[j]; } // Function to store alternate elements in left // and right subarray int split( int arr[], int left[], int right[], int l, int m, int r) { for ( int i = 0; i <= m - l; i++) left[i] = arr[i * 2]; for ( int i = 0; i < r - m; i++) right[i] = arr[i * 2 + 1]; } // Function to generate Worst Case of Merge Sort int generateWorstCase( int arr[], int l, int r) { if (l < r) { int m = l + (r - l) / 2; // create two auxiliary arrays int left[m - l + 1]; int right[r - m]; // Store alternate array elements in left // and right subarray split(arr, left, right, l, m, r); // Recurse first and second halves generateWorstCase(left, l, m); generateWorstCase(right, m + 1, r); // join left and right subarray join(arr, left, right, l, m, r); } } // Driver code int main() { // Sorted array int arr[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 }; int n = sizeof (arr) / sizeof (arr[0]); printf ( "Sorted array is \n" ); printArray(arr, n); // generate Worst Case of Merge Sort generateWorstCase(arr, 0, n - 1); printf ( "\nInput array that will result in " "worst case of merge sort is \n" ); printArray(arr, n); return 0; } |
Java
// Java program to generate Worst Case of Merge Sort import java.util.Arrays; class GFG { // Function to join left and right subarray static void join( int arr[], int left[], int right[], int l, int m, int r) { int i; for (i = 0 ; i <= m - l; i++) arr[i] = left[i]; for ( int j = 0 ; j < r - m; j++) arr[i + j] = right[j]; } // Function to store alternate elements in left // and right subarray static void split( int arr[], int left[], int right[], int l, int m, int r) { for ( int i = 0 ; i <= m - l; i++) left[i] = arr[i * 2 ]; for ( int i = 0 ; i < r - m; i++) right[i] = arr[i * 2 + 1 ]; } // Function to generate Worst Case of Merge Sort static void generateWorstCase( int arr[], int l, int r) { if (l < r) { int m = l + (r - l) / 2 ; // create two auxiliary arrays int [] left = new int [m - l + 1 ]; int [] right = new int [r - m]; // Store alternate array elements in left // and right subarray split(arr, left, right, l, m, r); // Recurse first and second halves generateWorstCase(left, l, m); generateWorstCase(right, m + 1 , r); // join left and right subarray join(arr, left, right, l, m, r); } } // driver program public static void main (String[] args) { // sorted array int arr[] = { 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 }; int n = arr.length; System.out.println( "Sorted array is" ); System.out.println(Arrays.toString(arr)); // generate Worst Case of Merge Sort generateWorstCase(arr, 0 , n - 1 ); System.out.println( "\nInput array that will result in \n" + "worst case of merge sort is \n" ); System.out.println(Arrays.toString(arr)); } } // Contributed by Pramod Kumar |
C#
// C# program to generate Worst Case of // Merge Sort using System; class GFG { // Function to join left and right subarray static void join ( int []arr, int []left, int []right, int l, int m, int r) { int i; for (i = 0; i <= m - l; i++) arr[i] = left[i]; for ( int j = 0; j < r - m; j++) arr[i + j] = right[j]; } // Function to store alternate elements in // left and right subarray static void split( int []arr, int []left, int []right, int l, int m, int r) { for ( int i = 0; i <= m - l; i++) left[i] = arr[i * 2]; for ( int i = 0; i < r - m; i++) right[i] = arr[i * 2 + 1]; } // Function to generate Worst Case of // Merge Sort static void generateWorstCase( int []arr, int l, int r) { if (l < r) { int m = l + (r - l) / 2; // create two auxiliary arrays int [] left = new int [m - l + 1]; int [] right = new int [r - m]; // Store alternate array elements // in left and right subarray split(arr, left, right, l, m, r); // Recurse first and second halves generateWorstCase(left, l, m); generateWorstCase(right, m + 1, r); // join left and right subarray join (arr, left, right, l, m, r); } } // driver program public static void Main () { // sorted array int []arr = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 }; int n = arr.Length; Console.Write( "Sorted array is\n" ); for ( int i = 0; i < n; i++) Console.Write(arr[i] + " " ); // generate Worst Case of Merge Sort generateWorstCase(arr, 0, n - 1); Console.Write( "\nInput array that will " + "result in \n worst case of" + " merge sort is \n" ); for ( int i = 0; i < n; i++) Console.Write(arr[i] + " " ); } } // This code is contributed by Smitha |
Javascript
<script> // javascript program to generate Worst Case // of Merge Sort // Function to print an array function printArray(A,size) { for (let i = 0; i < size; i++) { document.write(A[i] + " " ); } } // Function to join left and right subarray function join(arr,left,right,l,m,r) { let i; for (i = 0; i <= m - l; i++) arr[i] = left[i]; for (let j = 0; j < r - m; j++) { arr[i + j] = right[j]; } } // Function to store alternate elements in // left and right subarray function split(arr,left,right,l,m,r) { for (let i = 0; i <= m - l; i++) left[i] = arr[i * 2]; for (let i = 0; i < r - m; i++) right[i] = arr[i * 2 + 1]; } // Function to generate Worst Case // of Merge Sort function generateWorstCase(arr,l,r) { if (l < r) { let m = l + parseInt((r - l) / 2, 10); // Create two auxiliary arrays let left = new Array(m - l + 1); let right = new Array(r - m); left.fill(0); right.fill(0); // Store alternate array elements // in left and right subarray split(arr, left, right, l, m, r); // Recurse first and second halves generateWorstCase(left, l, m); generateWorstCase(right, m + 1, r); // Join left and right subarray join(arr, left, right, l, m, r); } } let arr = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 ]; let n = arr.length; document.write( "Sorted array is" + "</br>" ); printArray(arr, n); // Generate Worst Case of Merge Sort generateWorstCase(arr, 0, n - 1); document.write( "</br>" + "Input array that will result " + "in worst case of merge sort is" + "</br>" ); printArray(arr, n); // This code is contributed by vaibhavrabadiya117. </script> |
Python3
# Python program to generate Worst Case of Merge Sort # Function to join left and right subarray def join(arr, left, right, l, m, r): i = 0 ; for i in range (m - l + 1 ): arr[i] = left[i]; i + = 1 ; for j in range (r - m): arr[i + j] = right[j]; # Function to store alternate elements in left # and right subarray def split(arr, left, right, l, m, r): for i in range (m - l + 1 ): left[i] = arr[i * 2 ]; for i in range (r - m): right[i] = arr[i * 2 + 1 ]; # Function to generate Worst Case of Merge Sort def generateWorstCase(arr, l, r): if (l < r): m = l + (r - l) / / 2 ; # create two auxiliary arrays left = [ 0 for i in range (m - l + 1 )]; right = [ 0 for i in range (r - m)]; # Store alternate array elements in left # and right subarray split(arr, left, right, l, m, r); # Recurse first and second halves generateWorstCase(left, l, m); generateWorstCase(right, m + 1 , r); # join left and right subarray join(arr, left, right, l, m, r); # driver program if __name__ = = '__main__' : # sorted array arr = [ 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 ]; n = len (arr); print ( "Sorted array is" ); print (arr); # generate Worst Case of Merge Sort generateWorstCase(arr, 0 , n - 1 ); print ( "\nInput array that will result in \n" + "worst case of merge sort is " ); print (arr); # This code contributed by shikhasingrajput |
Output:
Sorted array is 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Input array that will result in worst case of merge sort is 1 9 5 13 3 11 7 15 2 10 6 14 4 12 8 16
Time Complexity: O(n logn)
Auxiliary Space: O(n)
References – Stack Overflow
This article is contributed by Aditya Goel. Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above
Please Login to comment...