Skip to content
Related Articles

Related Articles

Find a pair with the given difference

View Discussion
Improve Article
Save Article
  • Difficulty Level : Easy
  • Last Updated : 20 Jul, 2022

Given an unsorted array and a number n, find if there exists a pair of elements in the array whose difference is n. 
Examples: 

Input: arr[] = {5, 20, 3, 2, 50, 80}, n = 78
Output: Pair Found: (2, 80)

Input: arr[] = {90, 70, 20, 80, 50}, n = 45
Output: No Such Pair

Recommended Practice

Method 1: The simplest method is to run two loops, the outer loop picks the first element (smaller element) and the inner loop looks for the element picked by outer loop plus n. Time complexity of this method is O(n2).

Method 2: We can use sorting and Binary Search to improve time complexity to O(nLogn). The first step is to sort the array in ascending order. Once the array is sorted, traverse the array from left to right, and for each element arr[i], binary search for arr[i] + n in arr[i+1..n-1]. If the element is found, return the pair. Both first and second steps take O(nLogn). So overall complexity is O(nLogn). 
Method 3: The second step of the Method -2 can be improved to O(n). The first step remains the same. The idea for the second step is to take two index variables i and j, and initialize them as 0 and 1 respectively. Now run a linear loop. If arr[j] – arr[i] is smaller than n, we need to look for greater arr[j], so increment j. If arr[j] – arr[i] is greater than n, we need to look for greater arr[i], so increment i. Thanks to Aashish Barnwal for suggesting this approach. 
The following code is only for the second step of the algorithm, it assumes that the array is already sorted.  

C++




// C++ program to find a pair with the given difference
#include <bits/stdc++.h>
using namespace std;
 
// The function assumes that the array is sorted
bool findPair(int arr[], int size, int n)
{
    // Initialize positions of two elements
    int i = 0;
    int j = 1;
 
    // Search for a pair
    while (i < size && j < size)
    {
        if (i != j && (arr[j] - arr[i] == n || arr[i] - arr[j] == n) )
        {
            cout << "Pair Found: (" << arr[i] <<
                        ", " << arr[j] << ")";
            return true;
        }
        else if (arr[j]-arr[i] < n)
            j++;
        else
            i++;
    }
 
    cout << "No such pair";
    return false;
}
 
// Driver program to test above function
int main()
{
    int arr[] = {1, 8, 30, 40, 100};
    int size = sizeof(arr)/sizeof(arr[0]);
    int n = -60;
    findPair(arr, size, n);
    return 0;
}
 
// This is code is contributed by rathbhupendra


C




// C program to find a pair with the given difference
#include <stdio.h>
 
// The function assumes that the array is sorted
int findPair(int arr[], int size, int n)
{
    // Initialize positions of two elements
    int i = 0; 
    int j = 1;
 
    // Search for a pair
    while (i<size && j<size)
    {
        if (i != j && (arr[j] - arr[i] == n || arr[i] - arr[j] == n))
        {
            printf("Pair Found: (%d, %d)", arr[i], arr[j]);
            return 1;
        }
        else if (arr[j]-arr[i] < n)
            j++;
        else
            i++;
    }
 
    printf("No such pair");
    return 0;
}
 
// Driver program to test above function
int main()
{
    int arr[] = {1, 8, 30, 40, 100};
    int size = sizeof(arr)/sizeof(arr[0]);
    int n = -60;
    findPair(arr, size, n);
    return 0;
}


Java




// Java program to find a pair with the given difference
import java.io.*;
 
class PairDifference
{
    // The function assumes that the array is sorted
    static boolean findPair(int arr[],int n)
    {
        int size = arr.length;
 
        // Initialize positions of two elements
        int i = 0, j = 1;
 
        // Search for a pair
        while (i < size && j < size)
        {
            if (i != j && (arr[j] - arr[i] == n || arr[i] - arr[j] == n))
            {
                System.out.print("Pair Found: "+
                                 "( "+arr[i]+", "+ arr[j]+" )");
                return true;
            }
            else if (arr[j] - arr[i] < n)
                j++;
            else
                i++;
        }
 
        System.out.print("No such pair");
        return false;
    }
 
    // Driver program to test above function
    public static void main (String[] args)
    {
        int arr[] = {1, 8, 30, 40, 100};
        int n = -60;
        findPair(arr,n);
    }
}
/*This code is contributed by Devesh Agrawal*/


Python




# Python program to find a pair with the given difference
 
# The function assumes that the array is sorted
def findPair(arr,n):
 
    size = len(arr)
 
    # Initialize positions of two elements
    i,j = 0,1
 
    # Search for a pair
    while i < size and j < size:
 
        if i != j and arr[j]-arr[i] == n:
            print "Pair found (",arr[i],",",arr[j],")"
            return True
 
        elif arr[j] - arr[i] < n:
            j+=1
        else:
            i+=1
    print "No pair found"
    return False
 
# Driver function to test above function
arr = [1, 8, 30, 40, 100]
n = 60
findPair(arr, n)
 
# This code is contributed by Devesh Agrawal


C#




// C# program to find a pair with the given difference
using System;
 
class GFG {
     
    // The function assumes that the array is sorted
    static bool findPair(int []arr, int n)
    {
        int size = arr.Length;
 
        // Initialize positions of two elements
        int i = 0, j = 1;
 
        // Search for a pair
        while (i < size && j < size)
        {
            if (i != j && arr[j] - arr[i] == n)
            {
                Console.Write("Pair Found: "
                + "( " + arr[i] + ", " + arr[j] +" )");
                 
                return true;
            }
            else if (arr[j] - arr[i] < n)
                j++;
            else
                i++;
        }
 
        Console.Write("No such pair");
         
        return false;
    }
 
    // Driver program to test above function
    public static void Main ()
    {
        int []arr = {1, 8, 30, 40, 100};
        int n = 60;
         
        findPair(arr, n);
    }
}
 
// This code is contributed by Sam007.


PHP




<?php
// PHP program to find a pair with
// the given difference
 
// The function assumes that the
// array is sorted
function findPair(&$arr, $size, $n)
{
    // Initialize positions of
    // two elements
    $i = 0;
    $j = 1;
 
    // Search for a pair
    while ($i < $size && $j < $size)
    {
        if ($i != $j && $arr[$j] -
                        $arr[$i] == $n)
        {
            echo "Pair Found: " . "(" .
                  $arr[$i] . ", " . $arr[$j] . ")";
            return true;
        }
        else if ($arr[$j] - $arr[$i] < $n)
            $j++;
        else
            $i++;
    }
 
    echo "No such pair";
    return false;
}
 
// Driver Code
$arr = array(1, 8, 30, 40, 100);
$size = sizeof($arr);
$n = 60;
findPair($arr, $size, $n);
 
// This code is contributed
// by ChitraNayal
?>


Javascript




<script>
 
       // JavaScript program for the above approach
 
       // The function assumes that the array is sorted
       function findPair(arr, size, n) {
           // Initialize positions of two elements
           let i = 0;
           let j = 1;
 
           // Search for a pair
           while (i < size && j < size) {
               if (i != j && arr[j] - arr[i] == n) {
                   document.write("Pair Found: (" + arr[i] + ", " +
                   arr[j] + ")");
                   return true;
               }
               else if (arr[j] - arr[i] < n)
                   j++;
               else
                   i++;
           }
 
           document.write("No such pair");
           return false;
       }
 
       // Driver program to test above function
 
       let arr = [1, 8, 30, 40, 100];
       let size = arr.length;
       let n = 60;
       findPair(arr, size, n);
 
 
   // This code is contributed by Potta Lokesh
  
   </script>


Output

Pair Found: (100, 40)

Time Complexity: O(n*log(n)) [Sorting is still required as first step], Where n is number of element in given array
Auxiliary Space: O(1)

The above code can be simplified and can be made more understandable by reducing bunch of If-Else checks . Thanks to Nakshatra Chhillar for suggesting this simplification. We will understand simplifications through following code:

C++




// C++ program to find a pair with the given difference
#include <bits/stdc++.h>
using namespace std;
bool findPair(int arr[], int size, int n)
{
    // Step-1 Sort the array
    sort(arr, arr + size);
 
    // Initialize positions of two elements
    int l = 0;
    int r = 1;
 
    // take absolute value of difference
    // this does not affect the pair as A-B=diff is same as
    // B-A= -diff
    n = abs(n);
 
    // Search for a pair
 
    // These roop running conditions are sufficient
    while (l <= r and r < size) {
        int diff = arr[r] - arr[l];
        if (diff == n
            and l != r) // we need distinct elements in pair
                        // so l!=r
        {
            cout << "Pair Found: (" << arr[l] << ", "
                 << arr[r] << ")";
            return true;
        }
        else if (diff > n) // try to reduce the diff
            l++;
        else // Note if l==r then r will be advanced thus no
             // pair will be missed
            r++;
    }
    cout << "No such pair";
    return false;
}
 
// Driver program to test above function
int main()
{
    int arr[] = { 1, 8, 30, 40, 100 };
    int size = sizeof(arr) / sizeof(arr[0]);
    int n = -60;
    findPair(arr, size, n);
    cout << endl;
    n = 20;
    findPair(arr, size, n);
    return 0;
}
 
// This code is contributed by Nakshatra Chhillar


Output

Pair Found: (40, 100)
No such pair

Time Complexity: O(n*log(n)) [Sorting is still required as first step], Where n is number of element in given array
Auxiliary Space: O(1)

Method 4 :Hashing can also be used to solve this problem. Create an empty hash table HT. Traverse the array, use array elements as hash keys and enter them in HT. Traverse the array again look for value n + arr[i] in HT. 

C++




// C++ program to find a pair with the given difference
#include <bits/stdc++.h>
using namespace std;
 
// The function assumes that the array is sorted
bool findPair(int arr[], int size, int n)
{
    unordered_map<int, int> mpp;
    for (int i = 0; i < size; i++) {
        mpp[arr[i]]++;
 
        // Check if any element whose frequency
        // is greater than 1 exist or not for n == 0
        if (n == 0 && mpp[arr[i]] > 1)
            return true;
    }
 
    // Check if difference is zero and
    // we are unable to find any duplicate or
    // element whose frequency is greater than 1
    // then no such pair found.
    if (n == 0)
        return false;
 
    for (int i = 0; i < size; i++) {
        if (mpp.find(n + arr[i]) != mpp.end()) {
            cout << "Pair Found: (" << arr[i] << ", "
                 << n + arr[i] << ")";
            return true;
        }
    }
 
    cout << "No Pair found";
    return false;
}
 
// Driver program to test above function
int main()
{
    int arr[] = { 1, 8, 30, 40, 100 };
    int size = sizeof(arr) / sizeof(arr[0]);
    int n = -60;
    findPair(arr, size, n);
    return 0;
}


Java




// Java program for the above approach
import java.io.*;
import java.util.*;
 
class GFG
{
 
  // The function assumes that the array is sorted
  static boolean findPair(int[] arr, int size, int n)
  {
    HashMap<Integer,
            Integer> mpp = new HashMap<Integer,
                                      Integer>();
 
     // Traverse the array
    for(int i = 0; i < size; i++)
    {
          
        // Update frequency
        // of arr[i]
        mpp.put(arr[i],
               mpp.getOrDefault(arr[i], 0) + 1);
       
        // Check if any element whose frequency
        // is greater than 1 exist or not for n == 0
        if (n == 0 && mpp.get(arr[i]) > 1)
            return true;
    }
  
     // Check if difference is zero and
    // we are unable to find any duplicate or
    // element whose frequency is greater than 1
    // then no such pair found.
    if (n == 0)
        return false;
 
    for (int i = 0; i < size; i++) {
      if (mpp.containsKey(n + arr[i])) {
        System.out.print("Pair Found: (" + arr[i] + ", " +
                      + (n + arr[i]) + ")");
        return true;
      }
    }
    System.out.print("No Pair found");
    return false;
  }
 
 
// Driver Code
public static void main(String[] args)
{
    int[] arr = { 1, 8, 30, 40, 100 };
    int size = arr.length;
    int n = -60;
    findPair(arr, size, n);
}
}
 
// This code is contributed by code_hunt.


Python3




# Python program to find a pair with the given difference
 
# The function assumes that the array is sorted
def findPair(arr, size, n):
 
    mpp = {}
 
    for i in range(size):
        if arr[i] in mpp.keys():
             mpp[arr[i]] += 1
             if(n == 0 and mpp[arr[i]] > 1):
                return true;
        else:
             mpp[arr[i]] = 1
     
    if(n == 0):
      return false;
 
    for i in range(size):
         if n + arr[i] in mpp.keys():
            print("Pair Found: (" + str(arr[i]) + ", " + str(n + arr[i]) + ")")
            return True
     
    print("No Pair found")
    return False
 
# Driver program to test above function
arr = [ 1, 8, 30, 40, 100 ]
size = len(arr)
n = -60
findPair(arr, size, n)
 
# This code is contributed by shinjanpatra


C#




// C# program for the above approach
using System;
using System.Collections.Generic;
 
public class GFG
{
 
// The function assumes that the array is sorted
static bool findPair(int[] arr, int size, int n)
{
    Dictionary<int, int> mpp = new Dictionary<int, int>();
 
    // Traverse the array
    for(int i = 0; i < size; i++)
    {
         
        // Update frequency
        // of arr[i]
        mpp[arr[i]]=mpp.GetValueOrDefault(arr[i], 0) + 1;
     
        // Check if any element whose frequency
        // is greater than 1 exist or not for n == 0
        if (n == 0 && mpp[arr[i]] > 1)
            return true;
    }
 
    // Check if difference is zero and
    // we are unable to find any duplicate or
    // element whose frequency is greater than 1
    // then no such pair found.
    if (n == 0)
        return false;
 
    for (int i = 0; i < size; i++) {
    if (mpp.ContainsKey(n + arr[i])) {
        Console.WriteLine("Pair Found: (" + arr[i] + ", " +
                    + (n + arr[i]) + ")");
        return true;
    }
    }
    Console.WriteLine("No Pair found");
    return false;
}
 
// Driver Code
public static void Main(string []args)
{
    int[] arr = { 1, 8, 30, 40, 100 };
    int size = arr.Length;
    int n = -60;
    findPair(arr, size, n);
}
}
 
// This code is contributed by Aman Kumar


Javascript




<script>
// Javascript program for the above approach
 
// The function assumes that the array is sorted
function findPair(arr, size, n) {
  let mpp = new Map();
 
  // Traverse the array
  for (let i = 0; i < size; i++) {
 
    // Update frequency
    // of arr[i]
    if (mpp.has(arr[i]))
      mpp.set(arr[i], mpp.get(arr[i]) + 1);
    else
      mpp.set(arr[i], 1)
 
    // Check if any element whose frequency
    // is greater than 1 exist or not for n == 0
    if (n == 0 && mpp.get(arr[i]) > 1)
      return true;
  }
 
  // Check if difference is zero and
  // we are unable to find any duplicate or
  // element whose frequency is greater than 1
  // then no such pair found.
  if (n == 0)
    return false;
 
  for (let i = 0; i < size; i++) {
    if (mpp.has(n + arr[i])) {
      document.write("Pair Found: (" + arr[i] + ", " +
        + (n + arr[i]) + ")");
      return true;
    }
  }
  document.write("No Pair found");
  return false;
}
 
// Driver Code
let arr = [1, 8, 30, 40, 100];
let size = arr.length;
let n = -60;
findPair(arr, size, n);
 
// This code is contributed by Saurabh Jaiswal
</script>


Output

Pair Found: (100, 40)

Time Complexity: O(n), Where n is number of element in given array
Auxiliary Space: O(n)
 

Please write comments if you find any of the above codes/algorithms incorrect, or find other ways to solve the same problem.
 


My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!