Expressing factorial n as sum of consecutive numbers
Given two numbers N and M. Find the number of ways in which factorial N can be expressed as a sum of two or more consecutive numbers. Print the result modulo M.
Examples:
Input : N = 3, M = 7 Output : 1 Explanation: 3! can be expressed in one way, i.e. 1 + 2 + 3 = 6. Hence 1 % 7 = 1 Input : N = 4, M = 7 Output : 1 Explanation: 4! can be expressed in one way, i.e. 7 + 8 + 9 = 24 Hence 1 % 7 = 1
A simple solution is to first compute factorial, then count number of ways to represent factorial as sum of consecutive numbers using Count ways to express a number as sum of consecutive numbers. This solution causes overflow.
Below is a better solution to avoid overflow.
Let us consider that sum of r consecutive numbers be expressed as:
(a + 1) + (a + 2) + (a + 3) + … + (a + r), which simplifies as (r * (r + 2*a + 1)) / 2
Hence, (a + 1) + (a + 2) + (a + 3) + … + (a + r) = (r * (r + 2*a + 1)) / 2. Since the above expression is equal to factorial N, we write it as
2 * N! = r * (r + 2*a + 1)
Instead of counting all the pairs (r, a), we will count all pairs (r, r + 2*a + 1). Now, we are just counting all ordered pairs (X, Y) with XY = 2 * N! where X < Y and X, Y have different parity, that means if (r) is even, (r + 2*a + 1) is odd or if (r) is odd then (r + 2*a + 1) is even. This is equivalent to finding the odd divisors of 2 * N! which will be same as odd divisors of N!.
For counting the number of divisors in N!, we calculate the power of primes in factorization and total count of divisors become (p1 + 1) * (p2 + 1) * … * (pn + 1). To calculate the largest power of a prime in N!, we will use legendre’s formula.
Below is the implementation of the above approach.
C++
// CPP program to count number of // ways we can express a factorial // as sum of consecutive numbers #include <bits/stdc++.h> using namespace std; #define MAX 50002 vector< int > primes; // sieve of Eratosthenes to compute // the prime numbers void sieve() { bool isPrime[MAX]; memset (isPrime, true , sizeof (isPrime)); for ( int p = 2; p * p < MAX; p++) { if (isPrime[p] == true ) { for ( int i = p * 2; i < MAX; i += p) isPrime[i] = false ; } } // Store all prime numbers for ( int p = 2; p < MAX; p++) if (isPrime[p]) primes.push_back(p); } // function to calculate the largest // power of a prime in a number long long int power( long long int x, long long int y) { long long int count = 0; long long int z = y; while (x >= z) { count += (x / z); z *= y; } return count; } // Modular multiplication to avoid // the overflow of multiplication // Please see below for details long long int modMult( long long int a, long long int b, long long int mod) { long long int res = 0; a = a % mod; while (b > 0) { if (b % 2 == 1) res = (res + a) % mod; a = (a * 2) % mod; b /= 2; } return res % mod; } // Returns count of ways to express n! // as sum of consecutives. long long int countWays( long long int n, long long int m) { long long int ans = 1; // We skip 2 (First prime) as we need to // consider only odd primes for ( int i = 1; i < primes.size(); i++) { // compute the largest power of prime long long int powers = power(n, primes[i]); // if the power of current prime number // is zero in N!, power of primes greater // than current prime number will also // be zero, so break out from the loop if (powers == 0) break ; // multiply the result at every step ans = modMult(ans, powers + 1, m) % m; } // subtract 1 to exclude the case of 1 // being an odd divisor if (((ans - 1) % m) < 0) return (ans - 1 + m) % m; else return (ans - 1) % m; } // Driver Code int main() { sieve(); long long int n = 4, m = 7; cout << countWays(n, m); return 0; } |
Java
// Java program to count number of // ways we can express a factorial // as sum of consecutive numbers import java.util.*; class GFG { static int MAX = 50002 ; static ArrayList<Integer> primes = new ArrayList<Integer>(); // sieve of Eratosthenes to compute // the prime numbers public static void sieve() { boolean isPrime[] = new boolean [MAX]; for ( int i = 0 ; i < MAX; i++) isPrime[i] = true ; for ( int p = 2 ; p * p < MAX; p++) { if (isPrime[p] == true ) { for ( int i = p * 2 ; i < MAX; i += p) isPrime[i] = false ; } } // Store all prime numbers for ( int p = 2 ; p < MAX; p++) if (isPrime[p] == true ) primes.add(p); } // function to calculate the largest // power of a prime in a number public static int power( int x, int y) { int count = 0 ; int z = y; while (x >= z) { count += (x / z); z *= y; } return count; } // Modular multiplication to avoid // the overflow of multiplication // Please see below for details public static int modMult( int a, int b, int mod) { int res = 0 ; a = a % mod; while (b > 0 ) { if (b % 2 == 1 ) res = (res + a) % mod; a = (a * 2 ) % mod; b /= 2 ; } return res % mod; } // Returns count of ways to express n! // as sum of consecutives. public static int countWays( int n, int m) { int ans = 1 ; // We skip 2 (First prime) as we need to // consider only odd primes for ( int i = 1 ; i < primes.size(); i++) { // compute the largest power of prime int powers = power(n, primes.get(i)); // if the power of current prime number // is zero in N!, power of primes greater // than current prime number will also // be zero, so break out from the loop if (powers == 0 ) break ; // multiply the result at every step ans = modMult(ans, powers + 1 , m) % m; } // subtract 1 to exclude the case of 1 // being an odd divisor if (((ans - 1 ) % m) < 0 ) return (ans - 1 + m) % m; else return (ans - 1 ) % m; } //Driver function public static void main (String[] args) { sieve(); int n = 4 , m = 7 ; System.out.println(countWays(n,m)); } } // This code is contributed by akash1295. |
Python 3
# Python 3 program to count number of # ways we can express a factorial # as sum of consecutive numbers MAX = 50002 ; primes = [] # sieve of Eratosthenes to compute # the prime numbers def sieve(): isPrime = [ True ] * ( MAX ) p = 2 while p * p < MAX : if (isPrime[p] = = True ): for i in range ( p * 2 , MAX , p): isPrime[i] = False p + = 1 # Store all prime numbers for p in range ( 2 , MAX ): if (isPrime[p]): primes.append(p) # function to calculate the largest # power of a prime in a number def power( x, y): count = 0 z = y while (x > = z): count + = (x / / z) z * = y return count # Modular multiplication to avoid # the overflow of multiplication # Please see below for details def modMult(a, b,mod): res = 0 a = a % mod while (b > 0 ): if (b % 2 = = 1 ): res = (res + a) % mod a = (a * 2 ) % mod b / / = 2 return res % mod # Returns count of ways to express n! # as sum of consecutives. def countWays(n,m): ans = 1 # We skip 2 (First prime) as we need to # consider only odd primes for i in range ( 1 , len (primes)): # compute the largest power of prime powers = power(n, primes[i]) # if the power of current prime number # is zero in N!, power of primes greater # than current prime number will also # be zero, so break out from the loop if (powers = = 0 ): break # multiply the result at every step ans = modMult(ans, powers + 1 , m) % m # subtract 1 to exclude the case of 1 # being an odd divisor if (((ans - 1 ) % m) < 0 ): return (ans - 1 + m) % m else : return (ans - 1 ) % m # Driver Code if __name__ = = "__main__" : sieve() n = 4 m = 7 print (countWays(n, m)) # This code is contributed by ChitraNayal |
C#
// C# program to count number of // ways we can express a factorial // as sum of consecutive numbers using System ; using System.Collections; class GFG { static int MAX = 50002; static ArrayList primes = new ArrayList (); // sieve of Eratosthenes to compute // the prime numbers public static void sieve() { bool []isPrime = new bool [MAX]; for ( int i = 0; i < MAX; i++) isPrime[i] = true ; for ( int p = 2; p * p < MAX; p++) { if (isPrime[p] == true ) { for ( int i = p * 2; i < MAX; i += p) isPrime[i] = false ; } } // Store all prime numbers for ( int p = 2; p < MAX; p++) if (isPrime[p] == true ) primes.Add(p); } // function to calculate the largest // power of a prime in a number public static int power_prime( int x, int y) { int count = 0; int z = y; while (x >= z) { count += (x / z); z *= y; } return count; } // Modular multiplication to avoid // the overflow of multiplication // Please see below for details public static int modMult( int a, int b, int mod) { int res = 0; a = a % mod; while (b > 0) { if (b % 2 == 1) res = (res + a) % mod; a = (a * 2) % mod; b /= 2; } return res % mod; } // Returns count of ways to express n! // as sum of consecutives. public static int countWays( int n, int m) { int ans = 1; // We skip 2 (First prime) as we need to // consider only odd primes for ( int i = 1; i < primes.Count; i++) { // compute the largest power of prime int powers = power_prime(n, Convert.ToInt32(primes[i])); // if the power of current prime number // is zero in N!, power of primes greater // than current prime number will also // be zero, so break out from the loop if (powers == 0) break ; // multiply the result at every step ans = modMult(ans, powers + 1, m) % m; } // subtract 1 to exclude the case of 1 // being an odd divisor if (((ans - 1) % m) < 0) return (ans - 1 + m) % m; else return (ans - 1) % m; } //Driver function public static void Main () { sieve(); int n = 4, m = 7; Console.WriteLine(countWays(n,m)); } } // This code is contributed by Ryuga |
Javascript
<script> // Javascript program to count number of // ways we can express a factorial // as sum of consecutive numbers let MAX = 50002; let primes = []; // sieve of Eratosthenes to compute // the prime numbers function sieve() { let isPrime = new Array(MAX); for (let i = 0; i < MAX; i++) isPrime[i] = true ; for (let p = 2; p * p < MAX; p++) { if (isPrime[p] == true ) { for (let i = p * 2; i < MAX; i += p) isPrime[i] = false ; } } // Store all prime numbers for (let p = 2; p < MAX; p++) if (isPrime[p] == true ) primes.push(p); } // function to calculate the largest // power of a prime in a number function power(x,y) { let count = 0; let z = y; while (x >= z) { count += Math.floor(x / z); z *= y; } return count; } // Modular multiplication to avoid // the overflow of multiplication // Please see below for details function modMult(a,b,mod) { let res = 0; a = a % mod; while (b > 0) { if (b % 2 == 1) res = (res + a) % mod; a = (a * 2) % mod; b = Math.floor(b/2); } return res % mod; } // Returns count of ways to express n! // as sum of consecutives. function countWays(n,m) { let ans = 1; // We skip 2 (First prime) as we need to // consider only odd primes for (let i = 1; i < primes.length; i++) { // compute the largest power of prime let powers = power(n, primes[i]); // if the power of current prime number // is zero in N!, power of primes greater // than current prime number will also // be zero, so break out from the loop if (powers == 0) break ; // multiply the result at every step ans = modMult(ans, powers + 1, m) % m; } // subtract 1 to exclude the case of 1 // being an odd divisor if (((ans - 1) % m) < 0) return (ans - 1 + m) % m; else return (ans - 1) % m; } //Driver function sieve(); let n = 4, m = 7; document.write(countWays(n,m)); // This code is contributed by avanitrachhadiya2155 </script> |
1
Time Complexity: O(MAX*log(log(MAX))+M*log(K)) where MAX=5002, M is the number of primes less than MAX(i.e 5002), and K is the greatest prime number less than MAX.
Auxiliary Space: O(MAX)
Please Login to comment...